gapt.proofs.expansion.atomicExpansionET.scala Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of gapt_3 Show documentation
Show all versions of gapt_3 Show documentation
General Architecture for Proof Theory
The newest version!
package gapt.proofs.expansion
import gapt.logic.Polarity.{Negative, Positive}
import gapt.expr._
import gapt.expr.formula.All
import gapt.expr.formula.And
import gapt.expr.formula.Atom
import gapt.expr.formula.Bottom
import gapt.expr.formula.Ex
import gapt.expr.formula.Formula
import gapt.expr.formula.Imp
import gapt.expr.formula.Neg
import gapt.expr.formula.Or
import gapt.expr.formula.Quant
import gapt.expr.formula.Top
import gapt.expr.formula.hol.instantiate
import gapt.expr.subst.Substitution
import gapt.expr.util.freeVariables
import gapt.expr.util.rename
import gapt.logic.Polarity
import gapt.proofs.context.Context
import gapt.proofs.context.mutable.MutableContext
import scala.collection.mutable
object atomicExpansionET {
def mapDefinedAtom(et: ExpansionTree)(f: PartialFunction[(Formula, Formula, Polarity), ExpansionTree]): ExpansionTree =
(et: @unchecked) match {
case ETDefinition(sh, ETAtom(at, pol)) =>
f.lift((sh, at, pol)).getOrElse(et)
case ETDefinition(sh, ETWeakening(_, pol)) => ETWeakening(sh, pol)
case ETDefinition(sh, ch) =>
ETDefinition(sh, mapDefinedAtom(ch)(f))
case ETAtom(_, _) | ETWeakening(_, _) | ETTop(_) | ETBottom(_) => et
case ETMerge(a, b) => ETMerge(mapDefinedAtom(a)(f), mapDefinedAtom(b)(f))
case ETNeg(e) => ETNeg(mapDefinedAtom(e)(f))
case ETAnd(a, b) => ETAnd(mapDefinedAtom(a)(f), mapDefinedAtom(b)(f))
case ETOr(a, b) => ETOr(mapDefinedAtom(a)(f), mapDefinedAtom(b)(f))
case ETImp(a, b) => ETImp(mapDefinedAtom(a)(f), mapDefinedAtom(b)(f))
case ETWeakQuantifier(sh, insts) =>
ETWeakQuantifier(sh, Map() ++ insts.view.mapValues(mapDefinedAtom(_)(f)).toMap)
case ETStrongQuantifier(sh, ev, ch) =>
ETStrongQuantifier(sh, ev, mapDefinedAtom(ch)(f))
case ETSkolemQuantifier(sh, skT, ch) =>
ETSkolemQuantifier(sh, skT, mapDefinedAtom(ch)(f))
}
def mapDefinedAtom(ep: ExpansionProof)(f: PartialFunction[(Formula, Formula, Polarity), ExpansionTree]): ExpansionProof =
ExpansionProof(ep.expansionSequent.map(mapDefinedAtom(_)(f)))
def getDefinedAtoms(ep: ExpansionProof): Set[Const] =
ep.subProofs.collect { case ETDefinition(_, ETAtom(Apps(c: Const, _), _)) => c }
def apply(ep: ExpansionProof)(implicit ctx: Context): ExpansionProof =
apply(ep, getDefinedAtoms(ep))
def apply(ep: ExpansionProof, definedAtoms: Set[Const])(implicit ctx: Context): ExpansionProof =
apply(ep, definedAtoms, purelyPropositional = false)
def apply(ep: ExpansionProof, definedAtoms: Set[Const], purelyPropositional: Boolean)(implicit ctx: Context): ExpansionProof =
loop(ep, definedAtoms, purelyPropositional)(ctx.newMutable)
private def loop(ep: ExpansionProof, definedAtoms: Set[Const], purelyPropositional: Boolean)(implicit ctx: MutableContext): ExpansionProof =
if (definedAtoms.isEmpty) ep
else {
val d = definedAtoms.head
val Some(Abs.Block(xs, fml: Formula)) = ctx.definition(d): @unchecked
fml match {
case _ if !ep.subProofs.exists {
case ETAtom(Apps(`d`, _), _) => true
case _ => false
} =>
loop(ep, definedAtoms - d, purelyPropositional)
case Top() | Bottom() | Neg(_) | And(_, _) | Or(_, _) | Imp(_, _) | Atom(_, _) =>
val newDefs = mutable.Set[Const]()
def mkNew(f: Formula): (ExpansionTree, ExpansionTree) =
f match {
case Top() => (ETTop(Negative), ETTop(Positive))
case Bottom() => (ETBottom(Negative), ETBottom(Positive))
case a: Atom => (ETAtom(a, Negative), ETAtom(a, Positive))
case Neg(a) =>
val (an, ap) = mkNew(a)
(ETNeg(ap), ETNeg(an))
case And(a, b) =>
val (an, ap) = mkNew(a)
val (bn, bp) = mkNew(b)
(ETAnd(an, bn), ETAnd(ap, bp))
case Or(a, b) =>
val (an, ap) = mkNew(a)
val (bn, bp) = mkNew(b)
(ETOr(an, bn), ETOr(ap, bp))
case Imp(a, b) =>
val (an, ap) = mkNew(a)
val (bn, bp) = mkNew(b)
(ETImp(ap, bn), ETImp(an, bp))
case All(_, _) | Ex(_, _) =>
val ys = freeVariables(f).toSeq
val df = ctx.addDefinition(Abs(ys, f), reuse = false)
newDefs += df
val dfYs = df(ys).asInstanceOf[Atom]
ETDefinition(f, ETAtom(dfYs, Negative)) ->
ETDefinition(f, ETAtom(dfYs, Positive))
}
val (neg, pos) = mkNew(fml)
val ep_ = mapDefinedAtom(ep) {
case (_, Apps(`d`, as), Negative) => Substitution(xs zip as)(neg)
case (_, Apps(`d`, as), Positive) => Substitution(xs zip as)(pos)
}
loop(ep_, definedAtoms - d ++ newDefs, purelyPropositional)
case Quant(x_, _, isAll) =>
val x = rename(x_, xs)
val f = instantiate(fml, x)
val df = ctx.addDefinition(Abs(xs :+ x, f), reuse = false)
val strongPol = if (isAll) Positive else Negative
val weakPol = !strongPol
val newEigens = mutable.Buffer[(Var, Expr)]()
val nameGen = rename.awayFrom(ep.eigenVariables)
val ep1 = mapDefinedAtom(ep) {
case (sh, at @ Apps(`d`, as), `strongPol`) =>
val newEigen = nameGen.fresh(x)
newEigens += ((newEigen, at))
ETStrongQuantifier(
sh,
newEigen,
ETDefinition(
instantiate(sh, newEigen),
ETAtom(df(as :+ newEigen).asInstanceOf[Atom], strongPol)
)
)
}
val ep2 = mapDefinedAtom(ep1) {
case (sh, at2 @ Apps(`d`, as), `weakPol`) =>
ETWeakQuantifier.withMerge(
sh,
for {
(ev, at) <- newEigens
if !purelyPropositional || at == at2
} yield ev -> ETDefinition(
instantiate(sh, ev),
ETAtom(df(as :+ ev).asInstanceOf[Atom], weakPol)
)
)
}
loop(ep2, definedAtoms - d + df, purelyPropositional)
}
}
}