All Downloads are FREE. Search and download functionalities are using the official Maven repository.

gapt.proofs.lk.rules.macros.TransRule.scala Maven / Gradle / Ivy

The newest version!
package gapt.proofs.lk.rules.macros

import gapt.expr.formula.All
import gapt.expr.formula.And
import gapt.expr.formula.Eq
import gapt.expr.formula.Imp
import gapt.expr.formula.fol.FOLTerm
import gapt.expr.formula.fol.FOLVar
import gapt.proofs.lk.LKProof
import gapt.proofs.lk.rules.AndRightRule
import gapt.proofs.lk.rules.ContractionLeftRule
import gapt.proofs.lk.rules.ForallLeftRule
import gapt.proofs.lk.rules.ImpLeftRule
import gapt.proofs.lk.rules.LogicalAxiom

object TransRule {

  /**
   * Performs a proof employing transitivity.
   *
   * Takes a proof π with end-sequent of the form
   * 
   * (x=z), Trans, ... |- ...
   * 
* and return one with end-sequent of the form *
   * (x=y), (y=z), Trans, ... |- ...
   * 
* where Trans is defined as Forall xyz.((x=y ∧ y=z) -> x=z) * * @param x a first-order term * @param y a first-order term * @param z a first-order term * @param subProof The proof π which contains the (x=z) which is to be shown. * @return A proof with π as a subtree and the formula (x=z) replaced by (x=y) and (y=z). */ def apply(x: FOLTerm, y: FOLTerm, z: FOLTerm, subProof: LKProof): LKProof = { val xv = FOLVar("x") val yv = FOLVar("y") val zv = FOLVar("z") // Forall xyz.(x = y ^ y = z -> x = z) val Trans = All(xv, All(yv, All(zv, Imp(And(Eq(xv, yv), Eq(yv, zv)), Eq(xv, zv))))) def TransX(x: FOLTerm) = All(yv, All(zv, Imp(And(Eq(x, yv), Eq(yv, zv)), Eq(x, zv)))) def TransXY(x: FOLTerm, y: FOLTerm) = All(zv, Imp(And(Eq(x, y), Eq(y, zv)), Eq(x, zv))) def TransXYZ(x: FOLTerm, y: FOLTerm, z: FOLTerm) = Imp(And(Eq(x, y), Eq(y, z)), Eq(x, z)) val xy = Eq(x, y) val yz = Eq(y, z) val xz = Eq(x, z) val ax_xy = LogicalAxiom(xy) val ax_yz = LogicalAxiom(yz) val s1 = AndRightRule(ax_xy, xy, ax_yz, yz) val imp = ImpLeftRule(s1, And(xy, yz), subProof, xz) val allQZ = ForallLeftRule(imp, TransXY(x, y), z) val allQYZ = ForallLeftRule(allQZ, TransX(x), y) val allQXYZ = ForallLeftRule(allQYZ, Trans, x) ContractionLeftRule(allQXYZ, Trans) } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy