gapt.provers.viper.aip.axioms.IndependentInductionAxioms.scala Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of gapt_3 Show documentation
Show all versions of gapt_3 Show documentation
General Architecture for Proof Theory
The newest version!
package gapt.provers.viper.aip.axioms
import cats.instances.all._
import cats.syntax.all._
import gapt.expr.Var
import gapt.expr.formula.All
import gapt.expr.formula.Formula
import gapt.expr.util.freeVariables
import gapt.proofs.Sequent
import gapt.proofs.context.Context
import gapt.proofs.gaptic._
import gapt.provers.viper.aip._
/**
* Generates independent induction axioms.
*
* @param vsel The variables for which induction axioms are generated.
* @param fsel The formula of a sequent for which axioms are generated.
*/
case class IndependentInductionAxioms(
vsel: VariableSelector = allVariablesSelector(_)(_),
fsel: FormulaSelector = firstFormulaSelector(_)
) extends AxiomFactory {
def forAllVariables = copy(vsel = allVariablesSelector(_)(_))
def forVariables(variables: List[Var]) = copy(vsel = (_, _) => variables)
def forVariables(variables: Var*) = copy(vsel = (_, _) => variables.toList)
def forLabel(label: String) = copy(fsel = findFormula(_, label))
def forFormula(formula: Formula) = copy(fsel = _ => Right(formula))
/**
* Generates independent induction axioms for the given sequent.
*
* @param sequent The sequent for which the induction axioms are generated.
* @return Either a list of induction axioms, or a list of error-messages if the axioms could not be created
*/
override def apply(sequent: Sequent[(String, Formula)])(implicit ctx: Context): ThrowsError[List[Axiom]] = {
for {
formula <- fsel(sequent)
variables = vsel(formula, ctx)
axioms <- variables.traverse[ThrowsError, Axiom] {
variable => inductionAxiom(variables, variable, formula)
}
} yield axioms
}
/**
* The quantifier induction form of a given formula and induction variables.
*
* @param inductionVariables Inductive variables x_1,...,x_n that may possibly occur in the given formula.
* @param formula A formula of the form `∀Xφ`.
* @return A formula of the form `∀Yφ` where Y does not contain any of x_1,...,x_n.
*/
private def inductionQuantifierForm(inductionVariables: List[Var], formula: Formula) = {
val All.Block(_, matrix) = formula
val quantifierPrefix = freeVariables(matrix).diff(freeVariables(formula)).diff(inductionVariables toSet) toSeq
All.Block(quantifierPrefix, matrix)
}
/**
* The independent induction axiom for the given variables, and formula.
*
* @param inductionVariables All the inductive variables that are considered for the induction. This list of
* variables also contains the main induction variable `variable`.
* @param variable The inductive variable on which the induction is carried out.
* @param formula The formula on whose induction quantifier form the induction is carried out.
* @param ctx Defines constants, types, etc.
* @return An independent induction axiom.
*/
private def inductionAxiom(
inductionVariables: List[Var],
variable: Var,
formula: Formula
)(implicit ctx: Context): ThrowsError[Axiom] = {
val auxiliaryVariables = inductionVariables filter { _ != variable }
val inductionFormula = inductionQuantifierForm(inductionVariables, formula)
StandardInductionAxioms(variable, inductionFormula) map { axiom =>
new Axiom {
val formula = All.Block(auxiliaryVariables, axiom.formula)
def proof = {
ProofState(Sequent() :+ formula) + repeat(allR) + insert(axiom.proof) result
}
}
}
}
}