![JAR search and dependency download from the Maven repository](/logo.png)
gapt.provers.viper.aip.axioms.SequentialInductionAxioms.scala Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of gapt_3 Show documentation
Show all versions of gapt_3 Show documentation
General Architecture for Proof Theory
The newest version!
package gapt.provers.viper.aip.axioms
import gapt.expr.Var
import gapt.proofs.gaptic.{ProofState, allR, insert, repeat}
import gapt.proofs.Sequent
import gapt.provers.viper.aip.{ThrowsError, findFormula}
import cats.instances.all._
import cats.syntax.all._
import gapt.expr.formula.All
import gapt.expr.formula.Formula
import gapt.expr.util.freeVariables
import gapt.proofs.context.Context
import gapt.proofs.context.mutable.MutableContext
/**
* Generates sequential induction axioms.
*
* @param vsel The variables for which an induction axiom is generated.
* @param fsel The formula of a sequent for which induction axioms are generated.
*/
case class SequentialInductionAxioms(
vsel: VariableSelector = allVariablesSelector(_)(_),
fsel: FormulaSelector = firstFormulaSelector(_)
) extends AxiomFactory {
def forAllVariables = copy(vsel = allVariablesSelector(_)(_))
def forVariables(variables: List[Var]) = copy(vsel = (_, _) => variables)
def forVariables(variables: Var*) = copy(vsel = (_, _) => variables.toList)
def forLabel(label: String) = copy(fsel = findFormula(_, label))
def forFormula(formula: Formula) = copy(fsel = _ => Right(formula))
/**
* Computes sequential induction axioms for a sequent.
*
* @param sequent The sequent for which the axioms are generated.
* @param ctx The context defining types, constants, etc.
* @return Failure if the one of the given variables is not of inductive type.
* Otherwise a list of induction axioms of the form:
* ∀A∀{X < x}( IC(x,c,,1,,) ∧ ... ∧ IC(x,c,,l,,) -> ∀x∀{X > x}∀{X'}F ),
* where
* the input variables are X
* the input formula is of the form F' = ∀{X U X'}F
* FV(F') = A
* x in X
* {X < x} and {X > x} are subsets of X containing all variables with index smaller/greater than the index of x.
*/
override def apply(sequent: Sequent[(String, Formula)])(implicit ctx: Context): ThrowsError[List[Axiom]] = {
for {
formula <- fsel(sequent)
variables = vsel(formula, ctx)
axioms <- variables.traverse[ThrowsError, Axiom] { (v: Var) => inductionAxiom(variables, v, formula) }
} yield axioms
}
/**
* A sequential induction axiom for the given induction variables and formula.
*
* @param variables The inductive variables which are considered for this axiom.
* @param variable The variable on which the induction is carried out.
* @param formula The formula for which the axiom is generated.
* @param ctx Defines constants, types, etc.
* @return A sequential induction axiom.
*/
private def inductionAxiom(
variables: List[Var],
variable: Var,
formula: Formula
)(implicit ctx: Context): ThrowsError[Axiom] = {
val (outerVariables, _ :: innerVariables) = variables span { _ != variable }: @unchecked
val inductionFormula = All.Block(innerVariables, inductionQuantifierForm(variables, formula))
StandardInductionAxioms(variable, inductionFormula).map { axiom =>
new Axiom {
val formula = All.Block(outerVariables, axiom.formula)
def proof = {
ProofState(Sequent() :+ formula) + repeat(allR) + insert(axiom.proof) result
}
}
}
}
/**
* The quantifier induction form of a given formula and induction variables.
*
* @param inductionVariables Inductive variables x_1,...,x_n that may possibly occur in the given formula.
* @param formula A formula of the form `∀Xφ`.
* @return A formula of the form `∀Yφ` where Y does not contain any of x_1,...,x_n.
*/
private def inductionQuantifierForm(inductionVariables: List[Var], formula: Formula): Formula = {
val All.Block(_, matrix) = formula
val quantifierPrefix = freeVariables(matrix).diff(freeVariables(formula)).diff(inductionVariables.toSet).toSeq
All.Block(quantifierPrefix, matrix)
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy