All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.jdesktop.swingx.graphics.BlendComposite Maven / Gradle / Ivy

There is a newer version: 1.6.8
Show newest version
/*
 * $Id$
 *
 * Dual-licensed under LGPL (Sun and Romain Guy) and BSD (Romain Guy).
 *
 * Copyright 2005 Sun Microsystems, Inc., 4150 Network Circle,
 * Santa Clara, California 95054, U.S.A. All rights reserved.
 *
 * Copyright (c) 2006 Romain Guy 
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. The name of the author may not be used to endorse or promote products
 *    derived from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

package org.jdesktop.swingx.graphics;

import java.awt.Composite;
import java.awt.CompositeContext;
import java.awt.RenderingHints;
import java.awt.image.ColorModel;
import java.awt.image.DataBuffer;
import java.awt.image.DirectColorModel;
import java.awt.image.Raster;
import java.awt.image.RasterFormatException;
import java.awt.image.WritableRaster;

/**
 * 

A blend composite defines the rule according to which a drawing primitive * (known as the source) is mixed with existing graphics (know as the * destination.)

*

BlendComposite is an implementation of the * {@link java.awt.Composite} interface and must therefore be set as a state on * a {@link java.awt.Graphics2D} surface.

*

Please refer to {@link java.awt.Graphics2D#setComposite(java.awt.Composite)} * for more information on how to use this class with a graphics surface.

*

Blending Modes

*

This class offers a certain number of blending modes, or compositing * rules. These rules are inspired from graphics editing software packages, * like Adobe Photoshop or The GIMP.

*

Given the wide variety of implemented blending modes and the difficulty * to describe them with words, please refer to those tools to visually see * the result of these blending modes.

*

Opacity

*

Each blending mode has an associated opacity, defined as a float value * between 0.0 and 1.0. Changing the opacity controls the force with which the * compositing operation is applied. For instance, a composite with an opacity * of 0.0 will not draw the source onto the destination. With an opacity of * 1.0, the source will be fully drawn onto the destination, according to the * selected blending mode rule.

*

The opacity, or alpha value, is used by the composite instance to mutiply * the alpha value of each pixel of the source when being composited over the * destination.

*

Creating a Blend Composite

*

Blend composites can be created in various manners:

*
    *
  • Use one of the pre-defined instance. Example: * BlendComposite.Average.
  • *
  • Derive one of the pre-defined instances by calling * {@link #derive(float)} or {@link #derive(BlendingMode)}. Deriving allows * you to change either the opacity or the blending mode. Example: * BlendComposite.Average.derive(0.5f).
  • *
  • Use a factory method: {@link #getInstance(BlendingMode)} or * {@link #getInstance(BlendingMode, float)}.
  • *
*

Functionality Change in SwingX 1.6.3

*

Due to incorrect implementations of various blending modes incompatible changes have occurred. * The following will help users alleviate problems during migration: *

    *
  • {@link BlendingMode#BLUE} and {@link BlendingMode#GREEN} have been swapped.
  • *
*

* * @see org.jdesktop.swingx.graphics.BlendComposite.BlendingMode * @see java.awt.Graphics2D * @see java.awt.Composite * @see java.awt.AlphaComposite * @author Romain Guy * @author Karl Schaefer (support and additional modes) */ public final class BlendComposite implements Composite { /** * A blending mode defines the compositing rule of a * {@link org.jdesktop.swingx.graphics.BlendComposite}. * * @author Romain Guy * @author Karl Schaefer (support and additional modes) */ public enum BlendingMode { /** * The {@code Average} blending mode produces an average of the source and blend colors. The * image will push colors toward the middle, reducing the extremes. */ AVERAGE { @Override void blend(int[] src, int[] dst, int[] result) { result[0] = (src[0] + dst[0]) >> 1; result[1] = (src[1] + dst[1]) >> 1; result[2] = (src[2] + dst[2]) >> 1; result[3] = Math.min(255, src[3] + dst[3] - (src[3] * dst[3]) / 255); } }, /** * Similar to {@link #AVERAGE}, but more severely lightens or darkens the edge colors. */ STAMP { @Override void blend(int[] src, int[] dst, int[] result) { result[0] = Math.max(0, Math.min(255, dst[0] + 2 * src[0] - 256)); result[1] = Math.max(0, Math.min(255, dst[1] + 2 * src[1] - 256)); result[2] = Math.max(0, Math.min(255, dst[2] + 2 * src[2] - 256)); result[3] = Math.min(255, src[3] + dst[3] - (src[3] * dst[3]) / 255); } }, /** * The {@code Darken} blend mode compares the color information for each pixel of the base * and the blend color and applies the darker color as the result. Any pixels in the base * image that are lighter than the blend color are replaced, and pixels that are darker are * left unchanged. No part of the image will become lighter. */ DARKEN { @Override void blend(int[] src, int[] dst, int[] result) { result[0] = Math.min(src[0], dst[0]); result[1] = Math.min(src[1], dst[1]); result[2] = Math.min(src[2], dst[2]); result[3] = Math.min(255, src[3] + dst[3] - (src[3] * dst[3]) / 255); } }, /** * The {@code Multiply} blend mode multiplies the base color with the blend color. The * resulting color will always be darker, unless the blend color is white, which will result * in no change. 100% opaque black multiplied with any color will result in black. As you * overlay strokes of color with the Multiply blending mode, each stroke will result in * darker and darker color. */ MULTIPLY { @Override void blend(int[] src, int[] dst, int[] result) { result[0] = (src[0] * dst[0] + 2) >> 8; result[1] = (src[1] * dst[1] + 2) >> 8; result[2] = (src[2] * dst[2] + 2) >> 8; result[3] = Math.min(255, src[3] + dst[3] - (src[3] * dst[3]) / 255); } }, /** * The {@code Color Burn} blending mode increases the contrast to darken the base color * while reflecting the blend color. The darker the blend color, the more intensely the * color will be applied in the base image. White as the blend color produces no change. */ COLOR_BURN { @Override void blend(int[] src, int[] dst, int[] result) { result[0] = src[0] == 0 ? 0 : Math.max(0, 255 - (((255 - dst[0]) << 8) / src[0])); result[1] = src[1] == 0 ? 0 : Math.max(0, 255 - (((255 - dst[1]) << 8) / src[1])); result[2] = src[2] == 0 ? 0 : Math.max(0, 255 - (((255 - dst[2]) << 8) / src[2])); result[3] = Math.min(255, src[3] + dst[3] - (src[3] * dst[3]) / 255); } }, /** * {@code Inverse Color Burn} is the same as {@link #COLOR_BURN Color Burn} with the source * and destination swapped. */ INVERSE_COLOR_BURN { @Override void blend(int[] src, int[] dst, int[] result) { result[0] = dst[0] == 0 ? 0 : Math.max(0, 255 - (((255 - src[0]) << 8) / dst[0])); result[1] = dst[1] == 0 ? 0 : Math.max(0, 255 - (((255 - src[1]) << 8) / dst[1])); result[2] = dst[2] == 0 ? 0 : Math.max(0, 255 - (((255 - src[2]) << 8) / dst[2])); result[3] = Math.min(255, src[3] + dst[3] - (src[3] * dst[3]) / 255); } }, SOFT_BURN { @Override void blend(int[] src, int[] dst, int[] result) { result[0] = dst[0] + src[0] < 256 ? (dst[0] == 255 ? 255 : Math.min(255, (src[0] << 7) / (255 - dst[0]))) : Math.max(0, 255 - (((255 - dst[0]) << 7) / src[0])); result[1] = dst[1] + src[1] < 256 ? (dst[1] == 255 ? 255 : Math.min(255, (src[1] << 7) / (255 - dst[1]))) : Math.max(0, 255 - (((255 - dst[1]) << 7) / src[1])); result[2] = dst[2] + src[2] < 256 ? (dst[2] == 255 ? 255 : Math.min(255, (src[2] << 7) / (255 - dst[2]))) : Math.max(0, 255 - (((255 - dst[2]) << 7) / src[2])); result[3] = Math.min(255, src[3] + dst[3] - (src[3] * dst[3]) / 255); } }, /** * The {@code Subtract} blend mode is similar to {@link #COLOR_BURN Color Burn} but instead of increasing * contrast, it decreases brightness to darken the base color and reflect the blend color. * It is also similar to the Multiply blend mode, but produces a much more intense result. * White as the blend color produces no change. *

* This mode is also known as {@code Linear Burn}. */ SUBTRACT { @Override void blend(int[] src, int[] dst, int[] result) { result[0] = Math.max(0, src[0] + dst[0] - 256); result[1] = Math.max(0, src[1] + dst[1] - 256); result[2] = Math.max(0, src[2] + dst[2] - 256); result[3] = Math.min(255, src[3] + dst[3] - (src[3] * dst[3]) / 255); } }, /** * The {@code Lighten} blending mode compares the color information for each pixel of the * base and the blend color and applies the lighter color as the result. Any pixels in the * base image that are darker than the blend color are replaced, and pixels that are lighter * are left unchanged. No part of the image will become darker. */ LIGHTEN { @Override void blend(int[] src, int[] dst, int[] result) { result[0] = Math.max(src[0], dst[0]); result[1] = Math.max(src[1], dst[1]); result[2] = Math.max(src[2], dst[2]); result[3] = Math.min(255, src[3] + dst[3] - (src[3] * dst[3]) / 255); } }, /** * The {@code Screen} blending mode is the opposite of the {@link #MULTIPLY Multiply} mode * in that it multiples the inverse of the base color with the blend color. What this means * is that your image will get lighter overall. In areas where the blend color is black, the * base image will be unchanged, and in areas where the blend or base color is white, the * result will be no change. Dark areas in the base image will become significantly lighter, * and bright areas will become only slightly lighter. */ SCREEN { @Override void blend(int[] src, int[] dst, int[] result) { result[0] = 255 - ((255 - src[0]) * (255 - dst[0]) >> 8); result[1] = 255 - ((255 - src[1]) * (255 - dst[1]) >> 8); result[2] = 255 - ((255 - src[2]) * (255 - dst[2]) >> 8); result[3] = Math.min(255, src[3] + dst[3] - (src[3] * dst[3]) / 255); } }, /** * The {@code Color Dodge} blending mode is essentially the opposite of {@link #COLOR_BURN * Color Burn}. The {@code Color Dodge} blending mode decreases the contrast to brighten the * base color while reflecting the blend color. The lighter the blend color, the more * significant the color dodge effect will be making the result brighter, with less * contrast, and tinted toward the blend color. Black as the blend color produces no change. */ COLOR_DODGE { @Override void blend(int[] src, int[] dst, int[] result) { result[0] = src[0] == 255 ? 255 : Math.min((dst[0] << 8) / (255 - src[0]), 255); result[1] = src[1] == 255 ? 255 : Math.min((dst[1] << 8) / (255 - src[1]), 255); result[2] = src[2] == 255 ? 255 : Math.min((dst[2] << 8) / (255 - src[2]), 255); result[3] = Math.min(255, src[3] + dst[3] - (src[3] * dst[3]) / 255); } }, /** * {@code Inverse Color Dodge} is the same as {@link #COLOR_DODGE Color Dodge} with the * source and destination swapped. */ INVERSE_COLOR_DODGE { @Override void blend(int[] src, int[] dst, int[] result) { result[0] = dst[0] == 255 ? 255 : Math.min((src[0] << 8) / (255 - dst[0]), 255); result[1] = dst[1] == 255 ? 255 : Math.min((src[1] << 8) / (255 - dst[1]), 255); result[2] = dst[2] == 255 ? 255 : Math.min((src[2] << 8) / (255 - dst[2]), 255); result[3] = Math.min(255, src[3] + dst[3] - (src[3] * dst[3]) / 255); } }, SOFT_DODGE { @Override void blend(int[] src, int[] dst, int[] result) { result[0] = dst[0] + src[0] < 256 ? (src[0] == 255 ? 255 : Math.min(255, (dst[0] << 7) / (255 - src[0]))) : Math.max(0, 255 - (((255 - src[0]) << 7) / dst[0])); result[1] = dst[1] + src[1] < 256 ? (src[1] == 255 ? 255 : Math.min(255, (dst[1] << 7) / (255 - src[1]))) : Math.max(0, 255 - (((255 - src[1]) << 7) / dst[1])); result[2] = dst[2] + src[2] < 256 ? (src[2] == 255 ? 255 : Math.min(255, (dst[2] << 7) / (255 - src[2]))) : Math.max(0, 255 - (((255 - src[2]) << 7) / dst[2])); result[3] = Math.min(255, src[3] + dst[3] - (src[3] * dst[3]) / 255); } }, /** * {@code Add} is the opposite of {@link #SUBTRACT Subtract}. It increases brightness to * lighten the base color and reflect the blend color. It is also similar to the * {@link #SCREEN Screen} blend mode, but produces a more intense result. Black as the blend * color produces no change. *

* This mode is also known as {@code Linear Dodge}. */ ADD { @Override void blend(int[] src, int[] dst, int[] result) { result[0] = Math.min(255, src[0] + dst[0]); result[1] = Math.min(255, src[1] + dst[1]); result[2] = Math.min(255, src[2] + dst[2]); result[3] = Math.min(255, src[3] + dst[3]); } }, /** * The {@code Overlay} blending mode preserves the highlights and shadows of the base color * while mixing the base color and the blend color. It is a combination of the * {@link #MULTIPLY Multiply} and {@link #SCREEN Screen} blending modes--multiplying the * dark areas, and screening the light areas. A blend color of 50% gray has no effect on the * base image. */ OVERLAY { @Override void blend(int[] src, int[] dst, int[] result) { result[0] = dst[0] < 128 ? dst[0] * src[0] >> 7 : 255 - ((255 - dst[0]) * (255 - src[0]) >> 7); result[1] = dst[1] < 128 ? dst[1] * src[1] >> 7 : 255 - ((255 - dst[1]) * (255 - src[1]) >> 7); result[2] = dst[2] < 128 ? dst[2] * src[2] >> 7 : 255 - ((255 - dst[2]) * (255 - src[2]) >> 7); result[3] = Math.min(255, src[3] + dst[3] - (src[3] * dst[3]) / 255); } }, /** * The {@code Soft Light} blend mode creates a subtle lighter or darker result depending on * the brightness of the blend color. Blend colors that are more than 50% brightness will * lighten the base image and colors that are less than 50% brightness will darken the base * image. Pure black will create a slightly darker result; pure white will create a slightly * lighter result, and 50% gray will have no effect on the base image. */ SOFT_LIGHT { @Override void blend(int[] src, int[] dst, int[] result) { int mRed = src[0] * dst[0] / 255; int mGreen = src[1] * dst[1] / 255; int mBlue = src[2] * dst[2] / 255; result[0] = mRed + dst[0] * (255 - ((255 - dst[0]) * (255 - src[0]) / 255) - mRed) / 255; result[1] = mGreen + dst[1] * (255 - ((255 - dst[1]) * (255 - src[1]) / 255) - mGreen) / 255; result[2] = mBlue + dst[2] * (255 - ((255 - dst[2]) * (255 - src[2]) / 255) - mBlue) / 255; result[3] = Math.min(255, src[3] + dst[3] - (src[3] * dst[3]) / 255); } }, /** * {@code Hard Light} drastically lightens or darkens the base image depending on the * brightness of the blend color. The effect is more intense than {@link #SOFT_LIGHT Soft * Light} because the contrast is also increased. Blend colors that are more than 50% * brightness will lighten the base image in the same way as the screen blending mode. * Colors that are less than 50% brightness will darken the base image in the same way as * the multiply blending mode. Pure black will result in black; pure white will create a * white result, and 50% gray will have no effect on the base image. */ HARD_LIGHT { @Override void blend(int[] src, int[] dst, int[] result) { result[0] = src[0] < 128 ? dst[0] * src[0] >> 7 : 255 - ((255 - src[0]) * (255 - dst[0]) >> 7); result[1] = src[1] < 128 ? dst[1] * src[1] >> 7 : 255 - ((255 - src[1]) * (255 - dst[1]) >> 7); result[2] = src[2] < 128 ? dst[2] * src[2] >> 7 : 255 - ((255 - src[2]) * (255 - dst[2]) >> 7); result[3] = Math.min(255, src[3] + dst[3] - (src[3] * dst[3]) / 255); } }, /** * Burns or dodges the colors by increasing or decreasing the contrast, depending on the * blend color. If the blend color is lighter than 50% grey, the image is lightened by * decreasing the contrast. If the blend color is darker than 50% grey, the image is * darkened by increasing the contrast. */ VIVID_LIGHT { @Override void blend(int[] src, int[] dst, int[] result) { result[0] = src[0] < 128 ? src[0] == 0 ? 0 : Math.max(0, 255 - ((255 - dst[0]) << 7) / src[0]) : src[0] == 255 ? 255 : Math.min(255, (dst[0] << 7) / (255 - src[0])); result[1] = src[1] < 128 ? src[1] == 0 ? 0 : Math.max(0, 255 - ((255 - dst[1]) << 7) / src[1]) : src[1] == 255 ? 255 : Math.min(255, (dst[1] << 7) / (255 - src[1])); result[2] = src[2] < 128 ? src[2] == 0 ? 0 : Math.max(0, 255 - ((255 - dst[2]) << 7) / src[2]) : src[2] == 255 ? 255 : Math.min(255, (dst[2] << 7) / (255 - src[2])); result[3] = Math.min(255, src[3] + dst[3] - (src[3] * dst[3]) / 255); } }, LINEAR_LIGHT { @Override void blend(int[] src, int[] dst, int[] result) { result[0] = src[0] < 128 ? Math.max(0, dst[0] + (src[0] << 1) - 255) : Math.min(255, dst[0] + (src[0] - 128 << 1)); result[1] = src[1] < 128 ? Math.max(0, dst[1] + (src[1] << 1) - 255) : Math.min(255, dst[1] + (src[1] - 128 << 1)); result[2] = src[2] < 128 ? Math.max(0, dst[2] + (src[2] << 1) - 255) : Math.min(255, dst[2] + (src[2] - 128 << 1)); result[3] = Math.min(255, src[3] + dst[3] - (src[3] * dst[3]) / 255); } }, PIN_LIGHT { @Override void blend(int[] src, int[] dst, int[] result) { result[0] = src[0] < 128 ? Math.min(dst[0], src[0] << 1) : Math.max(dst[0], (src[0] - 128) << 1); result[1] = src[1] < 128 ? Math.min(dst[1], src[1] << 1) : Math.max(dst[1], (src[1] - 128) << 1); result[2] = src[2] < 128 ? Math.min(dst[2], src[2] << 1) : Math.max(dst[2], (src[2] - 128) << 1); result[3] = Math.min(255, src[3] + dst[3] - (src[3] * dst[3]) / 255); } }, HARD_MIX { @Override void blend(int[] src, int[] dst, int[] result) { result[0] = src[0] < 256 - dst[0] ? 0 : 255; result[1] = src[1] < 256 - dst[1] ? 0 : 255; result[2] = src[2] < 256 - dst[2] ? 0 : 255; result[3] = Math.min(255, src[3] + dst[3] - (src[3] * dst[3]) / 255); } }, REFLECT { @Override void blend(int[] src, int[] dst, int[] result) { result[0] = src[0] == 255 ? 255 : Math.min(255, dst[0] * dst[0] / (255 - src[0])); result[1] = src[1] == 255 ? 255 : Math.min(255, dst[1] * dst[1] / (255 - src[1])); result[2] = src[2] == 255 ? 255 : Math.min(255, dst[2] * dst[2] / (255 - src[2])); result[3] = Math.min(255, src[3] + dst[3] - (src[3] * dst[3]) / 255); } }, GLOW { @Override void blend(int[] src, int[] dst, int[] result) { result[0] = dst[0] == 255 ? 255 : Math.min(255, src[0] * src[0] / (255 - dst[0])); result[1] = dst[1] == 255 ? 255 : Math.min(255, src[1] * src[1] / (255 - dst[1])); result[2] = dst[2] == 255 ? 255 : Math.min(255, src[2] * src[2] / (255 - dst[2])); result[3] = Math.min(255, src[3] + dst[3] - (src[3] * dst[3]) / 255); } }, FREEZE { @Override void blend(int[] src, int[] dst, int[] result) { result[0] = src[0] == 0 ? 0 : Math.max(0, 255 - (255 - dst[0]) * (255 - dst[0]) / src[0]); result[1] = src[1] == 0 ? 0 : Math.max(0, 255 - (255 - dst[1]) * (255 - dst[1]) / src[1]); result[2] = src[2] == 0 ? 0 : Math.max(0, 255 - (255 - dst[2]) * (255 - dst[2]) / src[2]); result[3] = Math.min(255, src[3] + dst[3] - (src[3] * dst[3]) / 255); } }, HEAT { @Override void blend(int[] src, int[] dst, int[] result) { result[0] = dst[0] == 0 ? 0 : Math.max(0, 255 - (255 - src[0]) * (255 - src[0]) / dst[0]); result[1] = dst[1] == 0 ? 0 : Math.max(0, 255 - (255 - src[1]) * (255 - src[1]) / dst[1]); result[2] = dst[2] == 0 ? 0 : Math.max(0, 255 - (255 - src[2]) * (255 - src[2]) / dst[2]); result[3] = Math.min(255, src[3] + dst[3] - (src[3] * dst[3]) / 255); } }, /** * The {@code Difference} blending mode highlights the differences between the blend layer * and the base layer. The more technical explanation is that the blend color is subtracted * from the base color--or vice-versa, depending on the brightness--and the result is the * difference between them. When white is the blend color, the base image is inverted. When * black is the blend color, there is no change. */ DIFFERENCE { @Override void blend(int[] src, int[] dst, int[] result) { result[0] = Math.abs(dst[0] - src[0]); result[1] = Math.abs(dst[1] - src[1]); result[2] = Math.abs(dst[2] - src[2]); result[3] = Math.min(255, src[3] + dst[3] - (src[3] * dst[3]) / 255); } }, /** * The {@code Exclusion} blending mode works very much like {@link #DIFFERENCE Difference} * but the contrast is lower. When white is the blend color, the base image is inverted. * When black is the blend color, there is no change. */ EXCLUSION { @Override void blend(int[] src, int[] dst, int[] result) { result[0] = dst[0] + src[0] - (dst[0] * src[0] >> 7); result[1] = dst[1] + src[1] - (dst[1] * src[1] >> 7); result[2] = dst[2] + src[2] - (dst[2] * src[2] >> 7); result[3] = Math.min(255, src[3] + dst[3] - (src[3] * dst[3]) / 255); } }, /** * The {@code Hue} blend mode applies the hue of the blend color to the base image while retaining * the luminance and saturation of the base image. It gives the base image a tinted effect * where the tinting is darkest in areas of high saturation. Where the blend color is a * shade of gray (0% saturation), the base image is desaturated and where the base image is * gray, the Hue blending mode has no effect. */ HUE { @Override void blend(int[] src, int[] dst, int[] result) { float[] srcHSL = new float[3]; ColorUtilities.RGBtoHSL(src[0], src[1], src[2], srcHSL); float[] dstHSL = new float[3]; ColorUtilities.RGBtoHSL(dst[0], dst[1], dst[2], dstHSL); ColorUtilities.HSLtoRGB(srcHSL[0], dstHSL[1], dstHSL[2], result); result[3] = Math.min(255, src[3] + dst[3] - (src[3] * dst[3]) / 255); } }, /** * The {@code Saturation} blending mode applies the saturation of the blend color to the * base image while retaining the hue and luminance of the base image. Neutral tones (black, * white, and gray) in the blend will desaturate the base image. Neutral areas in the base * image will not be changed by the saturation blending mode. */ SATURATION { @Override void blend(int[] src, int[] dst, int[] result) { float[] srcHSL = new float[3]; ColorUtilities.RGBtoHSL(src[0], src[1], src[2], srcHSL); float[] dstHSL = new float[3]; ColorUtilities.RGBtoHSL(dst[0], dst[1], dst[2], dstHSL); ColorUtilities.HSLtoRGB(dstHSL[0], srcHSL[1], dstHSL[2], result); result[3] = Math.min(255, src[3] + dst[3] - (src[3] * dst[3]) / 255); } }, /** * The {@code Color} blending mode applies the hue and saturation of the blend color to the * base image while retaining the luminance of the base image. Simply put, it colors the * base image. Neutral blend colors will desaturate the base image. */ COLOR { @Override void blend(int[] src, int[] dst, int[] result) { float[] srcHSL = new float[3]; ColorUtilities.RGBtoHSL(src[0], src[1], src[2], srcHSL); float[] dstHSL = new float[3]; ColorUtilities.RGBtoHSL(dst[0], dst[1], dst[2], dstHSL); ColorUtilities.HSLtoRGB(srcHSL[0], srcHSL[1], dstHSL[2], result); result[3] = Math.min(255, src[3] + dst[3] - (src[3] * dst[3]) / 255); } }, /** * The {@code Luminosity} blending mode applies the luminosity (brightness) of the blend * colors to the base image while retaining the hue and saturation of the base image. * {@code Luminosity} is the opposite of the {@link #COLOR Color} blending mode. */ LUMINOSITY { @Override void blend(int[] src, int[] dst, int[] result) { float[] srcHSL = new float[3]; ColorUtilities.RGBtoHSL(src[0], src[1], src[2], srcHSL); float[] dstHSL = new float[3]; ColorUtilities.RGBtoHSL(dst[0], dst[1], dst[2], dstHSL); ColorUtilities.HSLtoRGB(dstHSL[0], dstHSL[1], srcHSL[2], result); result[3] = Math.min(255, src[3] + dst[3] - (src[3] * dst[3]) / 255); } }, /** * This one is the "opposite" of difference mode. Note that it is NOT difference mode * inverted, because black and white return the same result, but colors between become * brighter instead of darker. This mode can be used to invert parts of the base image, but * NOT to compare two images. */ NEGATION { @Override void blend(int[] src, int[] dst, int[] result) { result[0] = 255 - Math.abs(255 - dst[0] - src[0]); result[1] = 255 - Math.abs(255 - dst[1] - src[1]); result[2] = 255 - Math.abs(255 - dst[2] - src[2]); result[3] = Math.min(255, src[3] + dst[3] - (src[3] * dst[3]) / 255); } }, /** * Keeps the red channel from the blend image and the green and blue channels from the base * image. */ RED { @Override void blend(int[] src, int[] dst, int[] result) { result[0] = src[0]; result[1] = dst[1]; result[2] = dst[2]; result[3] = Math.min(255, src[3] + dst[3] - (src[3] * dst[3]) / 255); } }, /** * Keeps the green channel from the blend image and the red and blue channels from the base * image. */ GREEN { @Override void blend(int[] src, int[] dst, int[] result) { result[0] = dst[0]; result[1] = src[1]; result[2] = dst[2]; result[3] = Math.min(255, src[3] + dst[3] - (src[3] * dst[3]) / 255); } }, /** * Keeps the blue channel from the blend image and the red and green channels from the base * image. */ BLUE { @Override void blend(int[] src, int[] dst, int[] result) { result[0] = dst[0]; result[1] = dst[1]; result[2] = src[2]; result[3] = Math.min(255, src[3] + dst[3] - (src[3] * dst[3]) / 255); } }, ; /** * Blends the input colors into the result. * * @param src * the source RGBA * @param dst * the destination RGBA * @param result * the result RGBA * @throws NullPointerException * if any argument is {@code null} */ abstract void blend(int[] src, int[] dst, int[] result); } public static final BlendComposite Average = new BlendComposite(BlendingMode.AVERAGE); public static final BlendComposite Multiply = new BlendComposite(BlendingMode.MULTIPLY); public static final BlendComposite Screen = new BlendComposite(BlendingMode.SCREEN); public static final BlendComposite Darken = new BlendComposite(BlendingMode.DARKEN); public static final BlendComposite Lighten = new BlendComposite(BlendingMode.LIGHTEN); public static final BlendComposite Overlay = new BlendComposite(BlendingMode.OVERLAY); public static final BlendComposite HardLight = new BlendComposite(BlendingMode.HARD_LIGHT); public static final BlendComposite SoftLight = new BlendComposite(BlendingMode.SOFT_LIGHT); public static final BlendComposite VividLight = new BlendComposite(BlendingMode.VIVID_LIGHT); public static final BlendComposite LinearLight = new BlendComposite(BlendingMode.LINEAR_LIGHT); public static final BlendComposite PinLight = new BlendComposite(BlendingMode.PIN_LIGHT); public static final BlendComposite HardMix = new BlendComposite(BlendingMode.HARD_MIX); public static final BlendComposite Difference = new BlendComposite(BlendingMode.DIFFERENCE); public static final BlendComposite Negation = new BlendComposite(BlendingMode.NEGATION); public static final BlendComposite Exclusion = new BlendComposite(BlendingMode.EXCLUSION); public static final BlendComposite ColorDodge = new BlendComposite(BlendingMode.COLOR_DODGE); public static final BlendComposite InverseColorDodge = new BlendComposite(BlendingMode.INVERSE_COLOR_DODGE); public static final BlendComposite SoftDodge = new BlendComposite(BlendingMode.SOFT_DODGE); public static final BlendComposite ColorBurn = new BlendComposite(BlendingMode.COLOR_BURN); public static final BlendComposite InverseColorBurn = new BlendComposite(BlendingMode.INVERSE_COLOR_BURN); public static final BlendComposite SoftBurn = new BlendComposite(BlendingMode.SOFT_BURN); public static final BlendComposite Reflect = new BlendComposite(BlendingMode.REFLECT); public static final BlendComposite Glow = new BlendComposite(BlendingMode.GLOW); public static final BlendComposite Freeze = new BlendComposite(BlendingMode.FREEZE); public static final BlendComposite Heat = new BlendComposite(BlendingMode.HEAT); public static final BlendComposite Add = new BlendComposite(BlendingMode.ADD); public static final BlendComposite Subtract = new BlendComposite(BlendingMode.SUBTRACT); public static final BlendComposite Stamp = new BlendComposite(BlendingMode.STAMP); public static final BlendComposite Red = new BlendComposite(BlendingMode.RED); public static final BlendComposite Green = new BlendComposite(BlendingMode.GREEN); public static final BlendComposite Blue = new BlendComposite(BlendingMode.BLUE); public static final BlendComposite Hue = new BlendComposite(BlendingMode.HUE); public static final BlendComposite Saturation = new BlendComposite(BlendingMode.SATURATION); public static final BlendComposite Color = new BlendComposite(BlendingMode.COLOR); public static final BlendComposite Luminosity = new BlendComposite(BlendingMode.LUMINOSITY); private final float alpha; private final BlendingMode mode; private BlendComposite(BlendingMode mode) { this(mode, 1.0f); } private BlendComposite(BlendingMode mode, float alpha) { this.mode = mode; if (alpha < 0.0f || alpha > 1.0f) { throw new IllegalArgumentException( "alpha must be comprised between 0.0f and 1.0f"); } this.alpha = alpha; } /** *

Creates a new composite based on the blending mode passed * as a parameter. A default opacity of 1.0 is applied.

* * @param mode the blending mode defining the compositing rule * @return a new BlendComposite based on the selected blending * mode, with an opacity of 1.0 */ public static BlendComposite getInstance(BlendingMode mode) { return new BlendComposite(mode); } /** *

Creates a new composite based on the blending mode and opacity passed * as parameters. The opacity must be a value between 0.0 and 1.0.

* * @param mode the blending mode defining the compositing rule * @param alpha the constant alpha to be multiplied with the alpha of the * source. alpha must be a floating point between 0.0 and 1.0. * @throws IllegalArgumentException if the opacity is less than 0.0 or * greater than 1.0 * @return a new BlendComposite based on the selected blending * mode and opacity */ public static BlendComposite getInstance(BlendingMode mode, float alpha) { return new BlendComposite(mode, alpha); } /** *

Returns a BlendComposite object that uses the specified * blending mode and this object's alpha value. If the newly specified * blending mode is the same as this object's, this object is returned.

* * @param mode the blending mode defining the compositing rule * @return a BlendComposite object derived from this object, * that uses the specified blending mode */ public BlendComposite derive(BlendingMode mode) { return this.mode == mode ? this : new BlendComposite(mode, getAlpha()); } /** *

Returns a BlendComposite object that uses the specified * opacity, or alpha, and this object's blending mode. If the newly specified * opacity is the same as this object's, this object is returned.

* * @param alpha the constant alpha to be multiplied with the alpha of the * source. alpha must be a floating point between 0.0 and 1.0. * @throws IllegalArgumentException if the opacity is less than 0.0 or * greater than 1.0 * @return a BlendComposite object derived from this object, * that uses the specified blending mode */ public BlendComposite derive(float alpha) { return this.alpha == alpha ? this : new BlendComposite(getMode(), alpha); } /** *

Returns the opacity of this composite. If no opacity has been defined, * 1.0 is returned.

* * @return the alpha value, or opacity, of this object */ public float getAlpha() { return alpha; } /** *

Returns the blending mode of this composite.

* * @return the blending mode used by this object */ public BlendingMode getMode() { return mode; } /** * {@inheritDoc} */ @Override public int hashCode() { return Float.floatToIntBits(alpha) * 31 + mode.ordinal(); } /** * {@inheritDoc} */ @Override public boolean equals(Object obj) { if (!(obj instanceof BlendComposite)) { return false; } BlendComposite bc = (BlendComposite) obj; return mode == bc.mode && alpha == bc.alpha; } private static boolean isRgbColorModel(ColorModel cm) { if (cm instanceof DirectColorModel && cm.getTransferType() == DataBuffer.TYPE_INT) { DirectColorModel directCM = (DirectColorModel) cm; return directCM.getRedMask() == 0x00FF0000 && directCM.getGreenMask() == 0x0000FF00 && directCM.getBlueMask() == 0x000000FF && (directCM.getNumComponents() == 3 || directCM.getAlphaMask() == 0xFF000000); } return false; } private static boolean isBgrColorModel(ColorModel cm) { if (cm instanceof DirectColorModel && cm.getTransferType() == DataBuffer.TYPE_INT) { DirectColorModel directCM = (DirectColorModel) cm; return directCM.getRedMask() == 0x000000FF && directCM.getGreenMask() == 0x0000FF00 && directCM.getBlueMask() == 0x00FF0000 && (directCM.getNumComponents() == 3 || directCM.getAlphaMask() == 0xFF000000); } return false; } /** * {@inheritDoc} */ @Override public CompositeContext createContext(ColorModel srcColorModel, ColorModel dstColorModel, RenderingHints hints) { if (isRgbColorModel(srcColorModel) && isRgbColorModel(dstColorModel)) { return new BlendingRgbContext(this); } else if (isBgrColorModel(srcColorModel) && isBgrColorModel(dstColorModel)) { return new BlendingBgrContext(this); } throw new RasterFormatException("Incompatible color models:\n " + srcColorModel + "\n " + dstColorModel); } private static abstract class BlendingContext implements CompositeContext { protected final BlendComposite composite; private BlendingContext(BlendComposite composite) { this.composite = composite; } @Override public void dispose() { } } private static class BlendingRgbContext extends BlendingContext { private BlendingRgbContext(BlendComposite composite) { super(composite); } @Override public void compose(Raster src, Raster dstIn, WritableRaster dstOut) { int width = Math.min(src.getWidth(), dstIn.getWidth()); int height = Math.min(src.getHeight(), dstIn.getHeight()); float alpha = composite.getAlpha(); int[] result = new int[4]; int[] srcPixel = new int[4]; int[] dstPixel = new int[4]; int[] srcPixels = new int[width]; int[] dstPixels = new int[width]; for (int y = 0; y < height; y++) { src.getDataElements(0, y, width, 1, srcPixels); dstIn.getDataElements(0, y, width, 1, dstPixels); for (int x = 0; x < width; x++) { // pixels are stored as INT_ARGB // our arrays are [R, G, B, A] int pixel = srcPixels[x]; srcPixel[0] = (pixel >> 16) & 0xFF; srcPixel[1] = (pixel >> 8) & 0xFF; srcPixel[2] = (pixel ) & 0xFF; srcPixel[3] = (pixel >> 24) & 0xFF; pixel = dstPixels[x]; dstPixel[0] = (pixel >> 16) & 0xFF; dstPixel[1] = (pixel >> 8) & 0xFF; dstPixel[2] = (pixel ) & 0xFF; dstPixel[3] = (pixel >> 24) & 0xFF; composite.getMode().blend(srcPixel, dstPixel, result); // mixes the result with the opacity dstPixels[x] = ((int) (dstPixel[3] + (result[3] - dstPixel[3]) * alpha) & 0xFF) << 24 | ((int) (dstPixel[0] + (result[0] - dstPixel[0]) * alpha) & 0xFF) << 16 | ((int) (dstPixel[1] + (result[1] - dstPixel[1]) * alpha) & 0xFF) << 8 | (int) (dstPixel[2] + (result[2] - dstPixel[2]) * alpha) & 0xFF; } dstOut.setDataElements(0, y, width, 1, dstPixels); } } } private static class BlendingBgrContext extends BlendingContext { private BlendingBgrContext(BlendComposite composite) { super(composite); } @Override public void compose(Raster src, Raster dstIn, WritableRaster dstOut) { int width = Math.min(src.getWidth(), dstIn.getWidth()); int height = Math.min(src.getHeight(), dstIn.getHeight()); float alpha = composite.getAlpha(); int[] result = new int[4]; int[] srcPixel = new int[4]; int[] dstPixel = new int[4]; int[] srcPixels = new int[width]; int[] dstPixels = new int[width]; for (int y = 0; y < height; y++) { src.getDataElements(0, y, width, 1, srcPixels); dstIn.getDataElements(0, y, width, 1, dstPixels); for (int x = 0; x < width; x++) { // pixels are stored as INT_ABGR // our arrays are [R, G, B, A] int pixel = srcPixels[x]; srcPixel[0] = (pixel ) & 0xFF; srcPixel[1] = (pixel >> 8) & 0xFF; srcPixel[2] = (pixel >> 16) & 0xFF; srcPixel[3] = (pixel >> 24) & 0xFF; pixel = dstPixels[x]; dstPixel[0] = (pixel ) & 0xFF; dstPixel[1] = (pixel >> 8) & 0xFF; dstPixel[2] = (pixel >> 16) & 0xFF; dstPixel[3] = (pixel >> 24) & 0xFF; composite.getMode().blend(srcPixel, dstPixel, result); // mixes the result with the opacity dstPixels[x] = ((int) (dstPixel[3] + (result[3] - dstPixel[3]) * alpha) & 0xFF) << 24 | ((int) (dstPixel[0] + (result[0] - dstPixel[0]) * alpha) & 0xFF) | ((int) (dstPixel[1] + (result[1] - dstPixel[1]) * alpha) & 0xFF) << 8 | ((int) (dstPixel[2] + (result[2] - dstPixel[2]) * alpha) & 0xFF) << 16; } dstOut.setDataElements(0, y, width, 1, dstPixels); } } } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy