au.csiro.variantspark.cli.GenerateFeaturesCmd.scala Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of variant-spark_2.11 Show documentation
Show all versions of variant-spark_2.11 Show documentation
Genomic variants interpretation toolkit
The newest version!
package au.csiro.variantspark.cli
import au.csiro.sparkle.common.args4j.ArgsApp
import au.csiro.sparkle.cmd.CmdApp
import org.kohsuke.args4j.Option
import au.csiro.pbdava.ssparkle.common.arg4j.AppRunner
import au.csiro.pbdava.ssparkle.spark.SparkApp
import collection.JavaConverters._
import au.csiro.variantspark.input.VCFSource
import au.csiro.variantspark.input.VCFFeatureSource
import au.csiro.variantspark.input.HashingLabelSource
import org.apache.spark.mllib.linalg.Vectors
import au.csiro.variantspark.input.CsvLabelSource
import au.csiro.variantspark.cmd.Echoable
import au.csiro.pbdava.ssparkle.common.utils.Logging
import org.apache.commons.lang3.builder.ToStringBuilder
import au.csiro.variantspark.cmd.EchoUtils._
import au.csiro.pbdava.ssparkle.common.utils.LoanUtils
import au.csiro.pbdava.ssparkle.common.arg4j.TestArgs
import org.apache.hadoop.fs.FileSystem
import org.apache.commons.math3.stat.correlation.PearsonsCorrelation
import au.csiro.pbdava.ssparkle.spark.SparkUtils
import au.csiro.pbdava.ssparkle.common.utils.ReusablePrintStream
import au.csiro.variantspark.algo.RandomForestCallback
import au.csiro.variantspark.utils.VectorRDDFunction._
import au.csiro.variantspark.input.CsvFeatureSource
import au.csiro.variantspark.algo.RandomForestParams
import au.csiro.variantspark.data.BoundedOrdinalVariable
import au.csiro.pbdava.ssparkle.common.utils.Timer
import au.csiro.variantspark.utils.defRng
import au.csiro.variantspark.input.generate.OrdinalFeatureGenerator
import au.csiro.variantspark.output.ParquetFeatureSink
class GenerateFeaturesCmd extends ArgsApp with SparkApp with Echoable with Logging with TestArgs {
@Option(name = "-gl", required = false, usage = "Number of levels to generate (def=3)",
aliases = Array("--gen-n-levels"))
val nLevels: Int = 3
@Option(name = "-gv", required = false, usage = "Number of variables to generate (def=10000)",
aliases = Array("--gen-n-variables"))
val nVariables: Long = 10000L
@Option(name = "-gs", required = false, usage = "Number of samples to generate (def=100)",
aliases = Array("--gen-n-samples"))
val nSamples: Int = 100
@Option(name = "-of", required = true, usage = "Path to output file (def = stdout)",
aliases = Array("--output-file"))
val outputFile: String = null
@Option(name = "-ot", required = false, usage = "Input file type, one of: vcf, csv (def=vcf)",
aliases = Array("--output-type"))
val outputType: String = null
@Option(name = "-sr", required = false, usage = "Random seed to use (def=)",
aliases = Array("--seed"))
val randomSeed: Long = defRng.nextLong
@Option(name = "-sp", required = false, usage = "Spark parallelism (def=)",
aliases = Array("--spark-par"))
val sparkPar: Int = 0
override def testArgs: Array[String] = Array("-of", "target/getds.parquet", "-sp", "4")
override def run(): Unit = {
logInfo("Running with params: " + ToStringBuilder.reflectionToString(this))
echo(
s"Generating a synthetic dataset, variables: ${nVariables},"
+ s" samples: ${nSamples}, levels:${nLevels}")
verbose(s"Random seed is: ${randomSeed}")
val generator = OrdinalFeatureGenerator(nLevels = nLevels, nSamples = nSamples,
nVariables = nVariables, seed = randomSeed, sparkPar = sparkPar)
echo(s"Saving output to ${outputFile}")
val sink = new ParquetFeatureSink(outputFile)
sink.save(generator)
}
}
object GenerateFeaturesCmd {
def main(args: Array[String]) {
AppRunner.mains[GenerateFeaturesCmd](args)
}
}