aws.sdk.kotlin.services.sagemaker.model.HumanLoopActivationConditionsConfig.kt Maven / Gradle / Ivy
// Code generated by smithy-kotlin-codegen. DO NOT EDIT!
package aws.sdk.kotlin.services.sagemaker.model
/**
* Defines under what conditions SageMaker creates a human loop. Used within . See for the required
* format of activation conditions.
*/
class HumanLoopActivationConditionsConfig private constructor(builder: BuilderImpl) {
/**
* JSON expressing use-case specific conditions declaratively. If any condition is matched, atomic tasks are created against the configured work team.
* The set of conditions is different for Rekognition and Textract. For more information about how to structure the JSON, see
* JSON Schema for Human Loop Activation Conditions in Amazon Augmented AI
* in the Amazon SageMaker Developer Guide.
*/
val humanLoopActivationConditions: String? = builder.humanLoopActivationConditions
companion object {
@JvmStatic
fun fluentBuilder(): FluentBuilder = BuilderImpl()
internal fun builder(): DslBuilder = BuilderImpl()
operator fun invoke(block: DslBuilder.() -> kotlin.Unit): HumanLoopActivationConditionsConfig = BuilderImpl().apply(block).build()
}
override fun toString(): kotlin.String = buildString {
append("HumanLoopActivationConditionsConfig(")
append("humanLoopActivationConditions=$humanLoopActivationConditions)")
}
override fun hashCode(): kotlin.Int {
var result = humanLoopActivationConditions?.hashCode() ?: 0
return result
}
override fun equals(other: kotlin.Any?): kotlin.Boolean {
if (this === other) return true
if (javaClass != other?.javaClass) return false
other as HumanLoopActivationConditionsConfig
if (humanLoopActivationConditions != other.humanLoopActivationConditions) return false
return true
}
fun copy(block: DslBuilder.() -> kotlin.Unit = {}): HumanLoopActivationConditionsConfig = BuilderImpl(this).apply(block).build()
interface FluentBuilder {
fun build(): HumanLoopActivationConditionsConfig
/**
* JSON expressing use-case specific conditions declaratively. If any condition is matched, atomic tasks are created against the configured work team.
* The set of conditions is different for Rekognition and Textract. For more information about how to structure the JSON, see
* JSON Schema for Human Loop Activation Conditions in Amazon Augmented AI
* in the Amazon SageMaker Developer Guide.
*/
fun humanLoopActivationConditions(humanLoopActivationConditions: String): FluentBuilder
}
interface DslBuilder {
/**
* JSON expressing use-case specific conditions declaratively. If any condition is matched, atomic tasks are created against the configured work team.
* The set of conditions is different for Rekognition and Textract. For more information about how to structure the JSON, see
* JSON Schema for Human Loop Activation Conditions in Amazon Augmented AI
* in the Amazon SageMaker Developer Guide.
*/
var humanLoopActivationConditions: String?
fun build(): HumanLoopActivationConditionsConfig
}
private class BuilderImpl() : FluentBuilder, DslBuilder {
override var humanLoopActivationConditions: String? = null
constructor(x: HumanLoopActivationConditionsConfig) : this() {
this.humanLoopActivationConditions = x.humanLoopActivationConditions
}
override fun build(): HumanLoopActivationConditionsConfig = HumanLoopActivationConditionsConfig(this)
override fun humanLoopActivationConditions(humanLoopActivationConditions: String): FluentBuilder = apply { this.humanLoopActivationConditions = humanLoopActivationConditions }
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy