bio.ferlab.datalake.spark3.etl.v4.SingleETL.scala Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of datalake-spark3_2.12 Show documentation
Show all versions of datalake-spark3_2.12 Show documentation
Library built on top of Apache Spark to speed-up data lakes development..
package bio.ferlab.datalake.spark3.etl.v4
import bio.ferlab.datalake.commons.config.{Configuration, ETLContext}
import org.apache.spark.sql.DataFrame
abstract class SingleETL[T, C <: Configuration](context: ETLContext[T, C]) extends ETL(context) {
/**
* Takes a DataFrame as input and applies a set of transformations to it to produce the ETL output.
* It is recommended to not read any additional data but to use the extract() method instead to inject input data.
*
* @param data input data
* @return
*/
def transformSingle(data: Map[String, DataFrame],
lastRunValue: T = minValue,
currentRunValue: T = defaultCurrentValue): DataFrame
override final def transform(data: Map[String, DataFrame],
lastRunValue: T = minValue,
currentRunValue: T = defaultCurrentValue): Map[String, DataFrame] =
toMain(transformSingle(data, lastRunValue, currentRunValue))
def loadSingle(data: DataFrame,
lastRunValue: T = minValue,
currentRunValue: T = defaultCurrentValue): DataFrame = {
super.loadDataset(data, mainDestination)
}
override final def load(data: Map[String, DataFrame],
lastRunValue: T,
currentRunValue: T): Map[String, DataFrame] = toMain {
loadSingle(data(mainDestination.id), lastRunValue, currentRunValue)
}
}