All Downloads are FREE. Search and download functionalities are using the official Maven repository.

soot.dexpler.instructions.InvokePolymorphicInstruction Maven / Gradle / Ivy

package soot.dexpler.instructions;

/*-
 * #%L
 * Soot - a J*va Optimization Framework
 * %%
 * Copyright (C) 2012 Michael Markert, Frank Hartmann
 * 
 * (c) 2012 University of Luxembourg - Interdisciplinary Centre for
 * Security Reliability and Trust (SnT) - All rights reserved
 * Alexandre Bartel
 * 
 * %%
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as
 * published by the Free Software Foundation, either version 2.1 of the
 * License, or (at your option) any later version.
 * 
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Lesser Public License for more details.
 * 
 * You should have received a copy of the GNU General Lesser Public
 * License along with this program.  If not, see
 * .
 * #L%
 */

import java.util.Arrays;
import java.util.List;

import org.jf.dexlib2.iface.instruction.DualReferenceInstruction;
import org.jf.dexlib2.iface.instruction.Instruction;
import org.jf.dexlib2.iface.reference.MethodProtoReference;

import soot.ArrayType;
import soot.Body;
import soot.Local;
import soot.PatchingChain;
import soot.RefType;
import soot.Scene;
import soot.SootMethodRef;
import soot.Unit;
import soot.dexpler.DexBody;
import soot.jimple.IntConstant;
import soot.jimple.Jimple;
import soot.jimple.internal.JArrayRef;
import soot.jimple.internal.JAssignStmt;
import soot.jimple.internal.JNewArrayExpr;
import soot.jimple.internal.JimpleLocal;

public class InvokePolymorphicInstruction extends MethodInvocationInstruction {

  public InvokePolymorphicInstruction(Instruction instruction, int codeAddress) {
    super(instruction, codeAddress);
  }

  /* Instruction Format for invoke-polymorphic
   *   invoke-polymorphic MH.invoke, prototype, {mh, [args]}
   *     - MH.invoke - a method handle (i.e. MethodReference in dexlib2) for either the method invoke or invokeExact
   *     - prototype - a description of the types for the arguments being passed into invoke or invokeExact and their
   *       return type
   *     - {mh, [args]} - A list of one or more arguments included in the instruction. The first argument (mh) is always a 
   *       reference to the MethodHandle object that invoke or invokeExact is called on. The remaining arguments are 
   *       references to the objects passed into the call to invoke or invokeExact. This is similar to how 
   *       invoke-virtual functions.
   *   
   *   The invoke-polymorphic instruction behaves similar to how reflection functions from a coder standpoint it is just
   *   faster. The actual function being called depends on how the mh object is constructed at runtime (i.e. the 
   *   method name, parameter types and number, return type, and calling object). The prototype included in 
   *   invoke-polymorphic reflects the types of the arguments passed into invoke or invokeExact and should match the
   *   the types of the parameters of the actual method being invoked from a class hierarchy standpoint. However, they
   *   are included mainly so the VM knows the types of the variables being passed into the invoke and invokeExact 
   *   method for sizing purposes (i.e. so the data can be read properly). The actual parameter types for the method
   *   invoked is determined at runtime.
   *   
   *   From a static analysis standpoint there is no way to tell exactly what method is being called using
   *   the invoke-polymorphic instruction. A more complex context sensitive analysis would be required to determine
   *   the exact method being called. A less complex analysis could be performed to determine all possible methods
   *   that could be invoked by this instruction. However, neither of these options should really be performed when 
   *   translating dex to bytecode. Instead, they should be performed later on a per-analysis basis. As there is no
   *   equivalent instruction to invoke-polymorphic in normal Java bytecode, we simply translate the instruction to
   *   a normal invoke-virtual instruction where invoke or invokeExact is the method being called, mh is the object
   *   it is being called on, and args are the arguments for the method call if any. This decision does lose the 
   *   prototype data included in the instruction; however, as described above it does not really aid us in determining
   *   the method being called and resolving the method being called can still be done using other data in the code.
   *   
   *   See https://www.pnfsoftware.com/blog/android-o-and-dex-version-38-new-dalvik-opcodes-to-support-dynamic-invocation/ 
   *   for more information on this instruction and the class lang/invoke/Transformers.java for examples of 
   *   invoke-polymorhpic instructions whose prototype will does not match the actual method being invoked.
   */
  @Override
  public void jimplify(DexBody body) {
    SootMethodRef ref = getVirtualSootMethodRef();
    if (ref.declaringClass().isInterface()) {
      ref = getInterfaceSootMethodRef();
    }
  
    // The invoking object will always be included in the parameter types here
    List temp = buildParameters(body, 
        ((MethodProtoReference) ((DualReferenceInstruction) instruction).getReference2()).getParameterTypes(), false);
    List parms = temp.subList(1, temp.size());
    Local invoker = temp.get(0);
    
    // Only box the arguments into an array if there are arguments and if they are not
    // already in some kind of array
    if (parms.size() > 0 && !(parms.size() == 1 && parms.get(0) instanceof ArrayType)) {
      Body b = body.getBody();
      PatchingChain units = b.getUnits();
      
      //Return type for invoke and invokeExact is Object and paramater type is Object[]
      RefType rf = Scene.v().getRefType("java.lang.Object");
      Local newArrL = new JimpleLocal("$u" + (b.getLocalCount() + 1), ArrayType.v(rf, 1));
      b.getLocals().add(newArrL);
      JAssignStmt newArr = new JAssignStmt(newArrL, new JNewArrayExpr(rf, IntConstant.v(parms.size())));
      units.add(newArr);
    
      int i = 0;
      for (Local l : parms) {
        units.add(new JAssignStmt(new JArrayRef(newArrL, IntConstant.v(i)), l));
        i++;
      }
      parms = Arrays.asList(newArrL);
    }
    
    if (ref.declaringClass().isInterface()) {
      invocation = Jimple.v().newInterfaceInvokeExpr(invoker, ref, parms);
    } else {
      invocation = Jimple.v().newVirtualInvokeExpr(invoker, ref, parms);
    }
    body.setDanglingInstruction(this);
  }

}




© 2015 - 2024 Weber Informatics LLC | Privacy Policy