All Downloads are FREE. Search and download functionalities are using the official Maven repository.

umontreal.iro.lecuyer.probdist.HyperbolicSecantDist Maven / Gradle / Ivy

Go to download

SSJ is a Java library for stochastic simulation, developed under the direction of Pierre L'Ecuyer, in the Département d'Informatique et de Recherche Opérationnelle (DIRO), at the Université de Montréal. It provides facilities for generating uniform and nonuniform random variates, computing different measures related to probability distributions, performing goodness-of-fit tests, applying quasi-Monte Carlo methods, collecting (elementary) statistics, and programming discrete-event simulations with both events and processes.

The newest version!


/*
 * Class:        HyperbolicSecantDist
 * Description:  hyperbolic secant distribution
 * Environment:  Java
 * Software:     SSJ 
 * Copyright (C) 2001  Pierre L'Ecuyer and Université de Montréal
 * Organization: DIRO, Université de Montréal
 * @author       
 * @since

 * SSJ is free software: you can redistribute it and/or modify it under
 * the terms of the GNU General Public License (GPL) as published by the
 * Free Software Foundation, either version 3 of the License, or
 * any later version.

 * SSJ is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.

 * A copy of the GNU General Public License is available at
   GPL licence site.
 */

package umontreal.iro.lecuyer.probdist;

import optimization.*;


/**
 * Extends the class {@link ContinuousDistribution} for
 * the hyperbolic secant distribution with location
 * parameter μ and scale parameter 
 * σ > 0.
 * Its density is
 * 
 * 

*
* f (x) = 1/(2σ) sech(π/2(x - μ)/σ) *

* The distribution function is given by * *

*
* F(x) = 2/πtan-1[exp(π/2(x - μ)/σ)] *

* *

* The non-static versions of the methods cdf, barF, * and inverseF call the static version of the same name. * */ public class HyperbolicSecantDist extends ContinuousDistribution { protected double mu; protected double sigma; private static final double ZLIMB = 500.0; private static final double ZLIMS = 50.0; private static class Optim implements Uncmin_methods { private int n; private double[] xi; public Optim (double[] x, int n) { this.n = n; this.xi = new double[n]; System.arraycopy (x, 0, this.xi, 0, n); } public double f_to_minimize (double[] p) { double sum = 0.0; if (p[2] <= 0.0) return 1e200; for (int i = 0; i < n; i++) sum -= Math.log (density (p[1], p[2], xi[i])); return sum; } public void gradient (double[] x, double[] g) { } public void hessian (double[] x, double[][] h) { } } /** * Constructs a hyperbolic secant distribution with parameters * μ and σ. * */ public HyperbolicSecantDist (double mu, double sigma) { setParams (mu, sigma); } public double density (double x) { return HyperbolicSecantDist.density (mu, sigma, x); } public double cdf (double x) { return HyperbolicSecantDist.cdf (mu, sigma, x); } public double barF (double x) { return HyperbolicSecantDist.barF (mu, sigma, x); } public double inverseF (double u) { return HyperbolicSecantDist.inverseF (mu, sigma, u); } public double getMean() { return HyperbolicSecantDist.getMean (mu, sigma); } public double getVariance() { return HyperbolicSecantDist.getVariance (mu, sigma); } public double getStandardDeviation() { return HyperbolicSecantDist.getStandardDeviation (mu, sigma); } /** * Computes the density function * for a hyperbolic secant distribution with parameters μ and σ. * */ public static double density (double mu, double sigma, double x) { if (sigma <= 0.0) throw new IllegalArgumentException ("sigma <= 0"); double y = (x - mu) / sigma; if (Math.abs(y) >= ZLIMB) return 0.0; else return (1.0 / (Math.cosh (Math.PI * y / 2.0) * 2.0 * sigma)); } /** * Computes the distribution function of the hyperbolic secant distribution * with parameters μ and σ. * */ public static double cdf (double mu, double sigma, double x) { if (sigma <= 0.0) throw new IllegalArgumentException ("sigma <= 0"); double y = (x - mu) / sigma; if (y >= ZLIMS) return 1.0; else if (y <= -ZLIMB) return 0.0; else return (2.0 * Math.atan (Math.exp (Math.PI * y / 2.0))) / Math.PI; } /** * Computes the complementary distribution function of the * hyperbolic secant distribution with parameters μ and σ. * */ public static double barF (double mu, double sigma, double x) { if (sigma <= 0.0) throw new IllegalArgumentException ("sigma <= 0"); double y = (x - mu) / sigma; if (y >= ZLIMB) return 0.0; else if (y <= -ZLIMS) return 1.0; else return 2.0 / Math.PI * Math.atan (Math.exp (-Math.PI * y / 2.0)); } /** * Computes the inverse of the hyperbolic secant distribution * with parameters μ and σ. * */ public static double inverseF (double mu, double sigma, double u) { if (sigma <= 0.0) throw new IllegalArgumentException ("sigma <= 0"); if (u < 0.0 || u > 1.0) throw new IllegalArgumentException ("u not in [0,1]"); if (u >= 1.0) return Double.POSITIVE_INFINITY; else if (u <= 0.0) return Double.NEGATIVE_INFINITY; else return (mu + (2.0 * sigma / Math.PI * Math.log (Math.tan (Math.PI / 2.0 * u)))); } /** * Estimates the parameters * (μ, σ) of the hyperbolic secant distribution * using the maximum likelihood method, from the n observations * x[i], * i = 0, 1,…, n - 1. The estimates are returned in a two-element * array, in regular order: [μ, σ]. * * @param x the list of observations to use to evaluate parameters * * @param n the number of observations to use to evaluate parameters * * @return returns the parameters [hat(μ), * hat(σ)] * */ public static double[] getMLE (double[] x, int n) { double sum; if (n <= 0) throw new IllegalArgumentException ("n <= 0"); Optim system = new Optim (x, n); double[] parameters = new double[2]; double[] xpls = new double[3]; double[] param = new double[3]; double[] fpls = new double[3]; double[] gpls = new double[3]; int[] itrcmd = new int[2]; double[][] a = new double[3][3]; double[] udiag = new double[3]; sum = 0.0; for (int i = 0; i < n; i++) sum += x[i]; param[1] = sum / (double) n; sum = 0.0; for (int i = 0; i < n; i++) sum += (x[i] - param[1]) * (x[i] - param[1]); param[2] = Math.sqrt (sum / (double) n); Uncmin_f77.optif0_f77 (2, param, system, xpls, fpls, gpls, itrcmd, a, udiag); for (int i = 0; i < 2; i++) parameters[i] = xpls[i+1]; return parameters; } /** * Creates a new instance of a hyperbolic secant distribution with parameters * μ and σ estimated using the maximum likelihood method based on * the n observations x[i], * i = 0, 1,…, n - 1. * * @param x the list of observations to use to evaluate parameters * * @param n the number of observations to use to evaluate parameters * * */ public static HyperbolicSecantDist getInstanceFromMLE (double[] x, int n) { double parameters[] = getMLE (x, n); return new HyperbolicSecantDist (parameters[0], parameters[1]); } /** * Computes and returns the mean * E[X] = μ of the * hyperbolic secant distribution with parameters * μ and σ. * * @return the mean of the hyperbolic secant distribution * E[X] = μ * */ public static double getMean (double mu, double sigma) { if (sigma <= 0.0) throw new IllegalArgumentException ("sigma <= 0"); return mu; } /** * Computes and returns the variance * Var[X] = σ2 * of the hyperbolic secant distribution with parameters μ and σ. * * @return the variance of the hyperbolic secant distribution * * Var[X] = σ2 * */ public static double getVariance (double mu, double sigma) { if (sigma <= 0.0) throw new IllegalArgumentException ("sigma <= 0"); return (sigma * sigma); } /** * Computes and returns the standard deviation * of the hyperbolic secant distribution with parameters * μ and σ. * * @return the standard deviation of the hyperbolic secant distribution * */ public static double getStandardDeviation (double mu, double sigma) { return Math.sqrt (HyperbolicSecantDist.getVariance (mu, sigma)); } /** * Returns the parameter μ of this object. * */ public double getMu() { return mu; } /** * Returns the parameter σ of this object. * */ public double getSigma() { return sigma; } /** * Sets the parameters μ and σ of this object. * */ public void setParams (double mu, double sigma) { if (sigma <= 0.0) throw new IllegalArgumentException ("sigma <= 0"); this.mu = mu; this.sigma = sigma; } /** * Return a table containing the parameters of the current distribution. * This table is put in regular order: [μ, σ]. * * */ public double[] getParams () { double[] retour = {mu, sigma}; return retour; } public String toString () { return getClass().getSimpleName() + " : mu = " + mu + ", sigma = " + sigma; } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy