All Downloads are FREE. Search and download functionalities are using the official Maven repository.

umontreal.iro.lecuyer.probdist.KolmogorovSmirnovDist Maven / Gradle / Ivy

Go to download

SSJ is a Java library for stochastic simulation, developed under the direction of Pierre L'Ecuyer, in the Département d'Informatique et de Recherche Opérationnelle (DIRO), at the Université de Montréal. It provides facilities for generating uniform and nonuniform random variates, computing different measures related to probability distributions, performing goodness-of-fit tests, applying quasi-Monte Carlo methods, collecting (elementary) statistics, and programming discrete-event simulations with both events and processes.

The newest version!


/*
 * Class:        KolmogorovSmirnovDist
 * Description:  Kolmogorov-Smirnov distribution
 * Environment:  Java
 * Software:     SSJ
 * Organization: DIRO, Université de Montréal
 * @author
 * @since

 * SSJ is free software: you can redistribute it and/or modify it under
 * the terms of the GNU General Public License (GPL) as published by the
 * Free Software Foundation, either version 3 of the License, or
 * any later version.

 * SSJ is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.

 * A copy of the GNU General Public License is available at
   GPL licence site.
 */

package umontreal.iro.lecuyer.probdist;

import umontreal.iro.lecuyer.util.*;
import umontreal.iro.lecuyer.functions.MathFunction;


/**
 * Extends the class {@link ContinuousDistribution} for the
 *  Kolmogorov-Smirnov distribution with parameter n.
 * Given an empirical distribution Fn with n independent observations and
 * a continuous distribution F(x), the two-sided  statistic is defined as
 * 
 * 

*
* Dn = sup-∞ <= x <= ∞| Fn(x) - F(x)|  = {Dn+, Dn-}, *

* where Dn+ and Dn- are the + and - statistics as defined in * equations and on page [*] of this guide. * This class implements a high precision version of the * distribution * P[Dn <= x]; it is a Java translation of the C program * written in. According to its authors, it should give * 13 decimal digits of precision. It is extremely slow * for large values of n. * */ public class KolmogorovSmirnovDist extends ContinuousDistribution { protected int n; protected static final int NEXACT = 500; // For the Durbin matrix algorithm private static final double NORM = 1.0e140; private static final double INORM = 1.0e-140; private static final int LOGNORM = 140; //======================================================================== private static class Function implements MathFunction { protected int n; protected double u; public Function (int n, double u) { this.n = n; this.u = u; } public double evaluate (double x) { return u - cdf(n,x); } } /** * Constructs a distribution with parameter n. * Restriction: n >= 1. * */ public KolmogorovSmirnovDist (int n) { setN (n); } public double density (double x) { return density (n, x); } public double cdf (double x) { return cdf (n, x); } public double barF (double x) { return barF (n, x); } public double inverseF (double u) { return inverseF (n, u); } private static double dclem (int n, double x, double EPS) { return (cdf(n, x + EPS) - cdf(n, x - EPS)) / (2.0 * EPS); } protected static double densConnue (int n, double x) { if ((x >= 1.0) || (x <= 0.5 / n)) return 0.0; if (n == 1) return 2.0; if (x <= 1.0 / n) { double w; double t = 2.0 * x * n - 1.0; if (n <= NEXACT) { w = 2.0 * n * n * Num.factoPow (n); w *= Math.pow (t, (double) (n - 1)); return w; } w = Num.lnFactorial (n) + (n-1) * Math.log (t/n); return 2*n*Math.exp (w); } if (x >= 1.0 - 1.0 / n) return 2.0 * n * Math.pow (1.0 - x, (double) (n - 1)); return -1.0; } /** * Computes the density for the distribution with * parameter n. * */ public static double density (int n, double x) { double Res = densConnue(n,x); if (Res != -1.0) return Res; double EPS = 1.0 / 200.0; final double D1 = dclem(n, x, EPS); final double D2 = dclem(n, x, 2.0 * EPS); Res = D1 + (D1 - D2) / 3.0; if (Res <= 0.0) return 0.0; return Res; } /*========================================================================= The following implements the Durbin matrix algorithm and was programmed in C by G. Marsaglia, Wai Wan Tsang and Jingbo Wong in C. I have translated their program in Java. Only small modifications have been made in their program; the most important is to prevent the return of NAN or infinite values in some regions. (Richard Simard) =========================================================================*/ /* The C program to compute Kolmogorov's distribution K(n,d) = Prob(D_n < d), where D_n = max(x_1-0/n,x_2-1/n...,x_n-(n-1)/n,1/n-x_1,2/n-x_2,...,n/n-x_n) with x_1 NORM) renormalize (B, m, pB); if (n % 2 == 0) { for (i = 0; i < m * m; i++) V[i] = B[i]; eV[0] = pB[0]; } else { mMultiply (A, B, V, m); eV[0] = eA + pB[0]; } if (V[(m / 2) * m + (m / 2)] > NORM) renormalize (V, m, eV); } protected static double DurbinMatrix (int n, double d) { int k, m, i, j, g, eH; double h, s; double[] H; double[] Q; int[] pQ; //Omit next two lines if you require >7 digit accuracy in the right tail if (false) { s = d * d * n; if (s > 7.24 || (s > 3.76 && n > 99)) return 1 - 2 * Math.exp (-(2.000071 + .331 / Math.sqrt (n) + 1.409 / n) * s); } k = (int) (n * d) + 1; m = 2 * k - 1; h = k - n * d; H = new double[m * m]; Q = new double[m * m]; pQ = new int[1]; for (i = 0; i < m; i++) for (j = 0; j < m; j++) if (i - j + 1 < 0) H[i * m + j] = 0; else H[i * m + j] = 1; for (i = 0; i < m; i++) { H[i * m] -= Math.pow (h, (double)(i + 1)); H[(m - 1) * m + i] -= Math.pow (h, (double)(m - i)); } H[(m - 1) * m] += (2 * h - 1 > 0 ? Math.pow (2 * h - 1, (double) m) : 0); for (i = 0; i < m; i++) for (j = 0; j < m; j++) if (i - j + 1 > 0) for (g = 1; g <= i - j + 1; g++) H[i * m + j] /= g; eH = 0; mPower (H, eH, Q, pQ, m, n); s = Q[(k - 1) * m + k - 1]; for (i = 1; i <= n; i++) { s = s * (double) i / n; if (s < INORM) { s *= NORM; pQ[0] -= LOGNORM; } } s *= Math.pow (10., (double) pQ[0]); return s; } protected static double cdfConnu (int n, double x) { // For nx^2 > 18, barF(n, x) is smaller than 5e-16 if ((n * x * x >= 18.0) || (x >= 1.0)) return 1.0; if (x <= 0.5 / n) return 0.0; if (n == 1) return 2.0 * x - 1.0; if (x <= 1.0 / n) { double w; double t = 2.0 * x * n - 1.0; if (n <= NEXACT) { w = Num.factoPow (n); return w * Math.pow (t, (double) n); } w = Num.lnFactorial(n) + n * Math.log (t/n); return Math.exp (w); } if (x >= 1.0 - 1.0 / n) { return 1.0 - 2.0 * Math.pow (1.0 - x, (double) n); } return -1.0; } /** * Computes the distribution function F(x) with parameter n * using Durbin's matrix formula. It is a translation of the * C program in; * according to its authors, it returns 13 decimal digits * of precision. It is extremely slow for large n. * */ public static double cdf (int n, double x) { double Res = cdfConnu(n,x); if (Res != -1.0) return Res; return DurbinMatrix (n, x); } protected static double barFConnu (int n, double x) { final double w = n * x * x; if ((w >= 370.0) || (x >= 1.0)) return 0.0; if ((w <= 0.0274) || (x <= 0.5 / n)) return 1.0; if (n == 1) return 2.0 - 2.0 * x; if (x <= 1.0 / n) { double v; final double t = 2.0 * x*n - 1.0; if (n <= NEXACT) { v = Num.factoPow (n); return 1.0 - v * Math.pow (t, (double) n); } v = Num.lnFactorial(n) + n * Math.log (t/n); return 1.0 - Math.exp (v); } if (x >= 1.0 - 1.0 / n) { return 2.0 * Math.pow (1.0 - x, (double) n); } return -1.0; } /** * Computes the complementary distribution function bar(F)(x) * with parameter n. Simply returns 1 - cdf(n,x). It is not precise in * the upper tail. * */ public static double barF (int n, double x) { double h = barFConnu(n, x); if (h >= 0.0) return h; h = 1.0 - cdf(n, x); if (h >= 0.0) return h; return 0.0; } protected static double inverseConnue (int n, double u) { if (n <= 0) throw new IllegalArgumentException ("n <= 0"); if (u < 0.0 || u > 1.0) throw new IllegalArgumentException ("u must be in [0,1]"); if (u == 1.0) return 1.0; if (u == 0.0) return 0.5/n; if (n == 1) return (u + 1.0) / 2.0; final double NLNN = n*Math.log (n); final double LNU = Math.log(u) - Num.lnFactorial (n); if (LNU <= -NLNN){ double t = 1.0/n*(LNU); return 0.5 * (Math.exp(t) + 1.0/n); } if (u >= 1.0 - 2.0 / Math.exp (NLNN)) return 1.0 - Math.pow((1.0-u)/2.0, 1.0/n); return -1.0; } /** * Computes the inverse * x = F-1(u) of the * distribution F(x) with parameter n. * */ public static double inverseF (int n, double u) { double Res = inverseConnue(n,u); if (Res != -1.0) return Res; Function f = new Function (n,u); return RootFinder.brentDekker (0.5/n, 1.0, f, 1e-10); } /** * Returns the parameter n of this object. * */ public int getN() { return n; } /** * Sets the parameter n of this object. * */ public void setN (int n) { if (n <= 0) throw new IllegalArgumentException ("n <= 0"); this.n = n; supportA = 0.5 / n; supportB = 1.0; } /** * Returns an array containing the parameter n of this object. * * */ public double[] getParams () { double[] retour = {n}; return retour; } public String toString () { return getClass().getSimpleName() + " : n = " + n; } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy