All Downloads are FREE. Search and download functionalities are using the official Maven repository.

umontreal.iro.lecuyer.probdistmulti.ContinuousDistribution2Dim Maven / Gradle / Ivy

Go to download

SSJ is a Java library for stochastic simulation, developed under the direction of Pierre L'Ecuyer, in the Département d'Informatique et de Recherche Opérationnelle (DIRO), at the Université de Montréal. It provides facilities for generating uniform and nonuniform random variates, computing different measures related to probability distributions, performing goodness-of-fit tests, applying quasi-Monte Carlo methods, collecting (elementary) statistics, and programming discrete-event simulations with both events and processes.

The newest version!


/*
 * Class:        ContinuousDistribution2Dim
 * Description:  Mother class 2-dimensional continuous distributions
 * Environment:  Java
 * Software:     SSJ 
 * Copyright (C) 2001  Pierre L'Ecuyer and Université de Montréal
 * Organization: DIRO, Université de Montréal
 * @author       
 * @since

 * SSJ is free software: you can redistribute it and/or modify it under
 * the terms of the GNU General Public License (GPL) as published by the
 * Free Software Foundation, either version 3 of the License, or
 * any later version.

 * SSJ is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.

 * A copy of the GNU General Public License is available at
   GPL licence site.
 */

package umontreal.iro.lecuyer.probdistmulti;

import umontreal.iro.lecuyer.util.PrintfFormat;
import umontreal.iro.lecuyer.util.Num;


/**
 * Classes implementing 2-dimensional continuous distributions should inherit 
 * from this class.
 * Such distributions are characterized by a density function f (x, y);
 * thus the signature of a density method is supplied here.
 * This class also provides a default implementation of 
 * bar(F)(x, y), 
 * the upper CDF. The inverse function F-1(u) represents a curve
 * y = h(x) of constant u and it is not implemented.
 * 
 */
public abstract class ContinuousDistribution2Dim
                          extends ContinuousDistributionMulti {

   /**
    * Defines the target number of decimals of accuracy when
    *  approximating a distribution function, but there is no guarantee that
    *  this target is always attained.
    * 
    */
   public int decPrec = 15;
 

    // x infinity for some distributions
     protected static final double XINF = Double.MAX_VALUE;  

    // x infinity for some distributions                                       
    protected static final double XBIG = 1000.0;  

    // EPSARRAY[j]: Epsilon required for j decimal degits of precision
    protected static final double[] EPSARRAY = {
    0.5, 0.5E-1, 0.5E-2, 0.5E-3, 0.5E-4, 0.5E-5, 0.5E-6, 0.5E-7, 0.5E-8,
    0.5E-9, 0.5E-10, 0.5E-11, 0.5E-12, 0.5E-13, 0.5E-14, 0.5E-15, 0.5E-16,
    0.5E-17, 0.5E-18, 0.5E-19, 0.5E-20, 0.5E-21, 0.5E-22, 0.5E-23, 0.5E-24,
    0.5E-25, 0.5E-26, 0.5E-27, 0.5E-28, 0.5E-29, 0.5E-30, 0.5E-31, 0.5E-32,
    0.5E-33, 0.5E-34, 0.5E-35
    };

   /**
    * Returns f (x, y), the density of (X, Y) evaluated at (x, y).
    * 
    * @param x value x at which the density is evaluated
    * 
    *    @param y value y at which the density is evaluated
    * 
    *    @return density function evaluated at (x, y)
    * 
    */
   public abstract double density (double x, double y);


   /**
    * Simply calls density (x[0], x[1]).
    * 
    * @param x point 
    * (x[0], x[1]) at which the density is evaluated
    * 
    *    @return density function evaluated at 
    * (x[0], x[1])
    * 
    */
   public double density (double[] x) {
      if (x.length != 2)
         throw new IllegalArgumentException("x must be in dimension 2");

      return density (x[0], x[1]);
   }


   /**
    * .
    * 
    * Computes the distribution function F(x, y): 
    *  
    * 

*
* F(x, y) = P[X <= x, Y <= y] = ∫-∞xds-∞ydt f (s, t). *

* * @param x value x at which the distribution function is evaluated * * @param y value y at which the distribution function is evaluated * * @return distribution function evaluated at (x, y) * */ public abstract double cdf (double x, double y); /** * . * * Computes the upper cumulative distribution function * * bar(F)(x, y): * *

*
* bar(F)(x, y) = P[X >= x, Y >= y] = ∫xdsydt f (s, t). *

* * @param x value x at which the upper distribution is evaluated * * @param y value y at which the upper distribution is evaluated * * @return upper distribution function evaluated at (x, y) * */ public double barF (double x, double y) { double u = 1.0 + cdf (x, y) - cdf (XINF, y) - cdf (x, XINF); if (u <= 0.0) return 0.0; if (u >= 1.0) return 1.0; return u; } /** * . * * Computes the cumulative probability in the square region * *

*
* P[a1 <= X <= b1a2 <= Y <= b2] = ∫a1b1dxa2b2dy f (x, y). *

* * @param a1 x lower limit of the square * * @param a2 y lower limit of the square * * @param b1 x upper limit of the square * * @param b2 y upper limit of the square * * @return the cumulative probability in the square region * */ public double cdf (double a1, double a2, double b1, double b2) { if (a1 >= b1 || a2 >= b2) return 0.0; return cdf (b1, b2) - cdf (a1, b2) - cdf (b1, a2) + cdf(a1, a2); } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy