cc.mallet.cluster.iterator.tests.TestIterators Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of mallet Show documentation
Show all versions of mallet Show documentation
MALLET is a Java-based package for statistical natural language processing,
document classification, clustering, topic modeling, information extraction,
and other machine learning applications to text.
The newest version!
/* Copyright (C) 2002 Univ. of Massachusetts Amherst, Computer Science Dept.
This file is part of "MALLET" (MAchine Learning for LanguagE Toolkit).
http://www.cs.umass.edu/~mccallum/mallet
This software is provided under the terms of the Common Public License,
version 1.0, as published by http://www.opensource.org. For further
information, see the file `LICENSE' included with this distribution. */
package cc.mallet.cluster.iterator.tests;
import cc.mallet.cluster.Clustering;
import cc.mallet.cluster.iterator.*;
import cc.mallet.types.Instance;
import cc.mallet.types.InstanceList;
import cc.mallet.util.Randoms;
import junit.framework.*;
/**
*
* @author "Aron Culotta"
* @version 1.0
* @since 1.0
* @see TestCase
*/
public class TestIterators extends TestCase
{
public TestIterators (String name)
{
super (name);
}
private Clustering generateClustering (InstanceList instances) {
int[] labels = new int[]{0,0,0,1,1,1,2,2,2,2};
return new Clustering(instances, 3, labels);
}
public void testEvaluators ()
{
Randoms random = new Randoms(1);
InstanceList instances = new InstanceList(random, 100, 2).subList(0,10);
System.err.println(instances.size() + " instances");
Clustering clustering = generateClustering(instances);
System.err.println("clustering=" + clustering);
System.err.println("ClusterSampleIterator");
NeighborIterator iter = new ClusterSampleIterator(clustering,
random,
0.5,
10);
while (iter.hasNext()) {
Instance instance = (Instance)iter.next();
System.err.println(instance.getData() + "\n");
}
System.err.println("\n\nPairSampleIterator");
iter = new PairSampleIterator(clustering,
random,
0.5,
10);
while (iter.hasNext()) {
Instance instance = (Instance)iter.next();
System.err.println(instance.getData() + "\n");
}
System.err.println("\n\nAllPairsIterator");
iter = new AllPairsIterator(clustering);
while (iter.hasNext()) {
Instance instance = (Instance)iter.next();
System.err.println(instance.getData() + "\n");
}
}
public static Test suite ()
{
return new TestSuite (TestIterators.class);
}
protected void setUp ()
{
}
public static void main (String[] args)
{
junit.textui.TestRunner.run (suite());
}
}