All Downloads are FREE. Search and download functionalities are using the official Maven repository.

cc.mallet.fst.semi_supervised.constraints.OneLabelGEConstraints Maven / Gradle / Ivy

Go to download

MALLET is a Java-based package for statistical natural language processing, document classification, clustering, topic modeling, information extraction, and other machine learning applications to text.

The newest version!
/* Copyright (C) 2010 Univ. of Massachusetts Amherst, Computer Science Dept.
   This file is part of "MALLET" (MAchine Learning for LanguagE Toolkit).
   http://www.cs.umass.edu/~mccallum/mallet
   This software is provided under the terms of the Common Public License,
   version 1.0, as published by http://www.opensource.org.  For further
   information, see the file `LICENSE' included with this distribution. */

package cc.mallet.fst.semi_supervised.constraints;

import gnu.trove.TIntArrayList;
import gnu.trove.TIntObjectHashMap;

import java.util.ArrayList;
import java.util.BitSet;

import cc.mallet.fst.SumLattice;
import cc.mallet.fst.semi_supervised.StateLabelMap;
import cc.mallet.types.FeatureVector;
import cc.mallet.types.FeatureVectorSequence;
import cc.mallet.types.Instance;
import cc.mallet.types.InstanceList;

/**
 * A set of constraints on distributions over single
 * labels conditioned on the presence of input features.  
 * 
 * Subclasses are to be used with GE.
 * 
 * Multiple constraints are grouped together here
 * to make things more efficient.
 * 
 * @author Gregory Druck
 */

public abstract class OneLabelGEConstraints implements GEConstraint {

  // maps between input feature indices and constraints
  protected TIntObjectHashMap constraints;
  protected StateLabelMap map;
  
  // cache of set of constrained features that fire at last FeatureVector
  // provided in preprocess call
  protected TIntArrayList cache;

  public OneLabelGEConstraints() {
    this.constraints = new TIntObjectHashMap();
    this.cache = new TIntArrayList();
  }
  
  protected OneLabelGEConstraints(TIntObjectHashMap constraints, StateLabelMap map) {
    this.constraints = constraints;
    this.map = map;
    this.cache = new TIntArrayList();
  }
  
  public abstract void addConstraint(int fi, double[] target, double weight);
  
  public boolean isOneStateConstraint() {
    return true;
  }
  
  public void setStateLabelMap(StateLabelMap map) {
    this.map = map;
  }
  
  public void preProcess(FeatureVector fv) {
    cache.resetQuick();
    int fi;
    // cache constrained input features
    for (int loc = 0; loc < fv.numLocations(); loc++) {
      fi = fv.indexAtLocation(loc);
      if (constraints.containsKey(fi)) {
        cache.add(fi);
      }
    }
    if (constraints.containsKey(fv.getAlphabet().size())) {
      cache.add(fv.getAlphabet().size());
    }
  }
  
  // find examples that contain constrained input features
  public BitSet preProcess(InstanceList data) {
    // count
    int ii = 0;
    int fi;
    FeatureVector fv;
    BitSet bitSet = new BitSet(data.size());
    for (Instance instance : data) {
      FeatureVectorSequence fvs = (FeatureVectorSequence)instance.getData();
      for (int ip = 0; ip < fvs.size(); ip++) {
        fv = fvs.get(ip);
        for (int loc = 0; loc < fv.numLocations(); loc++) {
          fi = fv.indexAtLocation(loc);
          if (constraints.containsKey(fi)) {
            constraints.get(fi).count += 1;
            bitSet.set(ii);
          }
        }
        if (constraints.containsKey(fv.getAlphabet().size())) {
          bitSet.set(ii);
          constraints.get(fv.getAlphabet().size()).count += 1;
        }
      }

      ii++;
    }
    return bitSet;
  }    
  
  public double getCompositeConstraintFeatureValue(FeatureVector fv, int ip, int si1, int si2) {
    double value = 0;
    int li2 = map.getLabelIndex(si2);
    for (int i = 0; i < cache.size(); i++) {
      value += constraints.get(cache.getQuick(i)).getValue(li2);
    }
    return value;
  }

  public abstract double getValue();

  public void zeroExpectations() {
    for (int fi : constraints.keys()) {
      constraints.get(fi).expectation = new double[map.getNumLabels()];
    }
  }
  
  public void computeExpectations(ArrayList lattices) {
    double[][] gammas;    
    TIntArrayList cache = new TIntArrayList();
    for (int i = 0; i < lattices.size(); i++) {
      if (lattices.get(i) == null) { continue; }
      SumLattice lattice = lattices.get(i);
      FeatureVectorSequence fvs = (FeatureVectorSequence)lattice.getInput();
      gammas = lattice.getGammas();
      for (int ip = 0; ip < fvs.size(); ++ip) {
        cache.resetQuick();
        FeatureVector fv = fvs.getFeatureVector(ip);
        int fi;
        for (int loc = 0; loc < fv.numLocations(); loc++) {
          fi = fv.indexAtLocation(loc);
          // binary constraint features
          if (constraints.containsKey(fi)) {
            cache.add(fi);
          }
        }
        if (constraints.containsKey(fv.getAlphabet().size())) {
          cache.add(fv.getAlphabet().size());
        }
        for (int s = 0; s < map.getNumStates(); ++s) {
          int li = map.getLabelIndex(s);
          if (li != StateLabelMap.START_LABEL) {
            double gammaProb = Math.exp(gammas[ip+1][s]);
            for (int j = 0; j < cache.size(); j++) {
              constraints.get(cache.getQuick(j)).expectation[li] += gammaProb;
            }
          }
        }
      }
    }
  }
  
  protected abstract class OneLabelGEConstraint {
    
    protected double[] target;
    protected double[] expectation;
    protected double count;
    protected double weight;
    
    public OneLabelGEConstraint(double[] target, double weight) {
      this.target = target;
      this.weight = weight;
      this.expectation = null;
      this.count = 0;
    }
    
    public double getCount() {
      return count;
    }
    
    public double[] getTarget() {
      return target;
    }
    
    public double[] getExpectation() {
      return expectation;
    }
    
    public double getWeight() { 
      return weight;
    }
    
    public abstract double getValue(int li);
  }
}




© 2015 - 2024 Weber Informatics LLC | Privacy Policy