All Downloads are FREE. Search and download functionalities are using the official Maven repository.

cc.redberry.transformation.IndicesInsertion Maven / Gradle / Ivy

/*
 * Redberry: symbolic tensor computations.
 *
 * Copyright (c) 2010-2012:
 *   Stanislav Poslavsky   
 *   Bolotin Dmitriy       
 *
 * This file is part of Redberry.
 *
 * Redberry is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * Redberry is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with Redberry. If not, see .
 */
package cc.redberry.transformation;

import cc.redberry.core.context.CC;
import cc.redberry.core.indices.Indices;
import cc.redberry.core.indices.IndicesBuilderSimple;
import cc.redberry.core.indices.IndicesBuilderSorted;
import cc.redberry.core.indices.IndicesFactory;
import cc.redberry.core.indices.IndicesUtils;
import cc.redberry.core.indices.SimpleIndices;
import cc.redberry.core.indexgenerator.IndexGenerator;
import cc.redberry.core.indexgenerator.IndexGeneratorWrapper;
import cc.redberry.core.tensor.Expression;
import cc.redberry.core.tensor.Product;
import cc.redberry.core.tensor.SimpleTensor;
import cc.redberry.core.tensor.Sum;
import cc.redberry.core.tensor.Tensor;
import cc.redberry.core.tensor.TensorIterator;
import cc.redberry.core.utils.Indicator;
import cc.redberry.core.utils.TensorUtils;

/**
 *
 * @author Dmitry Bolotin
 * @author Stanislav Poslavsky
 * @author Konstantin Kiselev
 */
public class IndicesInsertion implements Transformation {
    private final Indicator indicator;
    private final Indices indices;
    private final int length;

    public IndicesInsertion(Indicator indicator, Indices indices) {
        if (indices.getUpper().length() != indices.getLower().length())
            //TODO more effective check
            throw new IllegalArgumentException();
        this.indicator = indicator;
        this.indices = indices;
        this.length = indices.size() / 2;
    }

    //TODO Indices -> int[]
    private Tensor transform(Tensor tensor, IndexGenerator indexGenerator, Indices ind) {
        if (tensor instanceof SimpleTensor) {
            if (!indicator.is(tensor))
                return tensor.clone();
            IndicesBuilderSimple ib = new IndicesBuilderSimple();
            ib.append(tensor.getIndices()).append(ind);
            return CC.createSimpleTensor(
                    CC.getNameDescriptor(((SimpleTensor) tensor).getName()).getName(), (SimpleIndices) ib.getIndices());
        } else if (tensor instanceof Sum) {
            Sum newSum = new Sum();
            IndexGeneratorWrapper wrapper = new IndexGeneratorWrapper(indexGenerator);
            for (Tensor t : tensor) {
                //TODO review   !!!!!!!!!!!!
                //FIXME review  !!!!!!!!!!!!
//                newSum.add(transform(t, wrapper, ind));
//                BUG bug was detected in cc.redberry physics
//                we used generator instead of wrapper
                newSum.add(transform(t, indexGenerator, ind));
                wrapper.dump();
            }
            wrapper.write();
            return newSum;
        } else if (tensor instanceof Product) {
            Product p = new Product();
            TensorIterator iterator = tensor.iterator();
            Tensor current;
            Tensor temp = null;
            int[] lower = ind.getLower().copy();
            int[] upper = ind.getUpper().copy();
            int[] total = new int[length * 2];
            while (iterator.hasNext()) {
                current = iterator.next();
                if (!indicator.is(current)) {
                    p.add(current.clone());
                    continue;
                }
                if (temp == null) {
                    System.arraycopy(upper, 0, total, 0, length);
                    for (int i = length; i < length * 2; ++i)
                        total[i] = indexGenerator.generate(
                                IndicesUtils.getType(lower[i - length]));
                    temp = current;
                    continue;
                } else {
                    p.add(transform(temp, indexGenerator, IndicesFactory.createSimple(total.clone())));
                    for (int i = 0; i < length; ++i)
                        total[i] = 0x80000000 ^ total[i + length];
                    for (int i = length; i < length * 2; ++i)
                        total[i] = indexGenerator.generate(
                                IndicesUtils.getType(total[i]));
                    temp = current;
                }
            }
            if (temp != null) {
                System.arraycopy(lower, 0, total, length, length);
                p.add(transform(temp, indexGenerator, IndicesFactory.createSimple(total)));
            }
            return p;
        } else
            return tensor.clone();
    }

    private IndexGenerator createIndexGenerator(Tensor tensor) {
        return new IndexGenerator(new IndicesBuilderSorted().append(indices).append(TensorUtils.getAllIndices(tensor)).asArray());
    }

    @Override
    public Tensor transform(Tensor tensor) {
        if (tensor instanceof Expression) {
            Expression e = (Expression) tensor;
            return new Expression(transform(e.left()), e.right());
        }
        return transform(tensor, createIndexGenerator(tensor), indices);
    }
}




© 2015 - 2025 Weber Informatics LLC | Privacy Policy