All Downloads are FREE. Search and download functionalities are using the official Maven repository.

cc.redberry.transformation.numbers.AbstractCollectNumbers Maven / Gradle / Ivy

/*
 * Redberry: symbolic tensor computations.
 *
 * Copyright (c) 2010-2012:
 *   Stanislav Poslavsky   
 *   Bolotin Dmitriy       
 *
 * This file is part of Redberry.
 *
 * Redberry is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * Redberry is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with Redberry. If not, see .
 */
package cc.redberry.transformation.numbers;

import cc.redberry.core.tensor.MultiTensor;
import cc.redberry.core.tensor.Tensor;
import cc.redberry.core.tensor.TensorIterator;
import cc.redberry.core.tensor.TensorNumber;
import cc.redberry.transformation.Transformation;

/**
 *
 * @author Dmitry Bolotin
 * @author Stanislav Poslavsky
 */
public abstract class AbstractCollectNumbers implements Transformation {
    protected abstract Class getMultiClass();

    protected abstract void multiOperation(TensorNumber first, TensorNumber second);

    protected abstract Tensor equvivalent(TensorNumber number, MultiTensor t);

    @Override
    public Tensor transform(Tensor tensor) {
        if (tensor.getClass() != getMultiClass())
            return tensor;
        MultiTensor multiTensor = (MultiTensor) tensor;
        TensorIterator it = multiTensor.iterator();
        Tensor current;
        TensorNumber number = null;
        while (it.hasNext()) {
            current = it.next();
            if (current instanceof TensorNumber)
                if (number == null)
                    number = (TensorNumber) current;
                else {
                    multiOperation(number, (TensorNumber) current);
                    it.remove();
                }
        }
//        if (number != null)
//            multiTensor.addFirst(number);
        if (number == null)
            return tensor;
        return equvivalent(number, multiTensor);
    }
}




© 2015 - 2025 Weber Informatics LLC | Privacy Policy