All Downloads are FREE. Search and download functionalities are using the official Maven repository.

cc.redberry.transformation.substitutions.ApplyIndexMappingUtils Maven / Gradle / Ivy

/*
 * Redberry: symbolic tensor computations.
 *
 * Copyright (c) 2010-2012:
 *   Stanislav Poslavsky   
 *   Bolotin Dmitriy       
 *
 * This file is part of Redberry.
 *
 * Redberry is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * Redberry is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with Redberry. If not, see .
 */
package cc.redberry.transformation.substitutions;

import java.util.ArrayList;
import java.util.List;
import java.util.Map;
import cc.redberry.core.context.CC;
import cc.redberry.core.indices.IndicesUtils;
import cc.redberry.core.indexgenerator.IndexGenerator;
import cc.redberry.core.tensor.Product;
import cc.redberry.core.tensor.SimpleTensor;
import cc.redberry.core.tensor.Tensor;
import cc.redberry.core.indexmapping.IndexMappingBufferRecord;
import cc.redberry.core.indexmapping.IndexMappingImpl;
import cc.redberry.core.indexmapping.IndexMappingBuffer;
import cc.redberry.core.transformations.ApplyIndexMappingTransformation;
import cc.redberry.core.utils.TensorUtils;

/**
 *
 * @author Dmitry Bolotin
 * @author Stanislav Poslavsky
 */
public class ApplyIndexMappingUtils {
    public static Tensor applyIndexMappingWithoutDiffStates(Tensor target,
            IndexMappingBuffer indexMappingBuffer, int[] usedIndices) {
        return ApplyIndexMappingTransformation.INSTANCE.perform(target,
                new IndexMappingImpl(usedIndices, indexMappingBuffer));
    }

    public static Tensor applyIndexMappingWithoutDiffStates(Tensor target,
            IndexMappingBuffer indexMappingBuffer) {
        return applyIndexMappingWithoutDiffStates(target, indexMappingBuffer, new int[0]);
    }

    public static Tensor applyIndexMappingWithDiffStates(Tensor target,
            int[] from, int[] to, int[] usedIndices) {
        if (from.length != to.length)
            throw new IllegalArgumentException();
        IndexMappingImpl preprocess = new IndexMappingImpl();

        //creating metrics for rising-lowing indices 
        int fromIndex, toIndex, fromState, toState;

        IndexGenerator ig = new IndexGenerator(TensorUtils.getAllIndices(target));

        List metrics = new ArrayList<>();
        int i = 0;
        for (; i < from.length; ++i) {
            //diff states mapping detected
            if ((fromState = IndicesUtils.getRawStateInt(from[i])) != (toState = IndicesUtils.getRawStateInt(to[i]))) {

                fromIndex = IndicesUtils.getNameWithType(from[i]);
                toIndex = ig.generate(IndicesUtils.getType(fromIndex));
                preprocess.add(fromIndex, toIndex);

                if (fromState != 0)
                    metrics.add(CC.createMetric(fromIndex, toIndex));
                else
                    metrics.add(CC.createMetric(0x80000000 | fromIndex, 0x80000000 | toIndex));
            }
            from[i] = IndicesUtils.getNameWithType(from[i]);
            to[i] = IndicesUtils.getNameWithType(to[i]);
        }
        //preprocessing conflicting indices
        target = ApplyIndexMappingTransformation.INSTANCE.perform(target, preprocess);

        //adding metrics
        if (!metrics.isEmpty()) {
            Product p = new Product();
            p.add(target);
            p.add(metrics);
            target = p;
        }
        IndexMappingImpl im = new IndexMappingImpl(usedIndices, from, to);
        return ApplyIndexMappingTransformation.INSTANCE.perform(target, im);
    }

    public static Tensor applyIndexMappingWithDiffStates(Tensor target,
            IndexMappingBuffer indexMappingBuffer, int[] usedIndices) {
        IndexMappingImpl preprocess = new IndexMappingImpl();

        //creating metrics for rising-lowing indices 
        int fromIndex, toIndex;

        IndexGenerator ig = new IndexGenerator(TensorUtils.getAllIndices(target));

        List metrics = new ArrayList<>();

        for (Map.Entry entry : indexMappingBuffer.getMap().entrySet()) {
            IndexMappingBufferRecord record = entry.getValue();

            //diff states mapping detected
            if (record.diffStatesInitialized() && !record.isContracted()) {
                fromIndex = entry.getKey().intValue();
                toIndex = ig.generate(IndicesUtils.getType(fromIndex));
                preprocess.add(fromIndex, toIndex);

                byte states = record.getStates();
                if ((states & 1) == 1)
                    metrics.add(CC.createMetric(fromIndex, toIndex));
                else
                    metrics.add(CC.createMetric(0x80000000 | fromIndex, 0x80000000 | toIndex));
            }
        }
        //preprocessing conflicting indices
        target = ApplyIndexMappingTransformation.INSTANCE.perform(target, preprocess);

        //adding metrics
        if (!metrics.isEmpty()) {
            Product p = new Product();
            p.add(target);
            p.add(metrics);
            target = p;
        }
        IndexMappingImpl im = new IndexMappingImpl(usedIndices, indexMappingBuffer);
        return ApplyIndexMappingTransformation.INSTANCE.perform(target, im);
    }

    public static Tensor applyIndexMappingWithDiffStates(Tensor target,
            IndexMappingBuffer indexMappingBuffer) {
        return applyIndexMappingWithDiffStates(target, indexMappingBuffer, new int[0]);
    }
}




© 2015 - 2025 Weber Informatics LLC | Privacy Policy