
cc.redberry.transformation.symmetrize.Symmetrize Maven / Gradle / Ivy
/*
* Redberry: symbolic tensor computations.
*
* Copyright (c) 2010-2012:
* Stanislav Poslavsky
* Bolotin Dmitriy
*
* This file is part of Redberry.
*
* Redberry is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Redberry is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Redberry. If not, see .
*/
package cc.redberry.transformation.symmetrize;
import java.util.ArrayList;
import java.util.List;
import cc.redberry.core.context.CC;
import cc.redberry.core.indices.Indices;
import cc.redberry.core.indices.IndicesUtils;
import cc.redberry.core.number.ComplexElement;
import cc.redberry.core.number.NumberFraction;
import cc.redberry.core.number.RationalElement;
import cc.redberry.core.tensor.Product;
import cc.redberry.core.tensor.Sum;
import cc.redberry.core.tensor.Tensor;
import cc.redberry.core.tensor.TensorNumber;
import cc.redberry.core.indexmapping.IndexMappingDirectAllowingUnmapped;
import cc.redberry.core.indexmapping.IndexMappingUtils;
import cc.redberry.core.combinatorics.Permutation;
import cc.redberry.core.combinatorics.Symmetries;
import cc.redberry.core.combinatorics.Symmetry;
import cc.redberry.core.transformations.ApplyIndexMappingDirectTransformation;
import cc.redberry.transformation.Transformation;
/**
*
* @author Dmitry Bolotin
* @author Stanislav Poslavsky
*/
public class Symmetrize implements Transformation {
private final Indices indices;
private final int[] indicesNames;
private final Symmetries symmetries;
private final boolean allowDiffStates;
private final boolean multiplyFactorial;
public Symmetrize(Indices indices, Symmetries symmetries, boolean multiplyFactorial) {
this.indices = indices.getFreeIndices();
this.multiplyFactorial = multiplyFactorial;
this.indicesNames = indices.getFreeIndices().getAllIndices().copy();
// for (int i = 0; i < indicesNames.length; ++i)
// indicesNames[i] = IndicesUtils.getNameWithType(indicesNames[i]);
this.symmetries = symmetries;
boolean allowDiffStates = false;
for (Symmetry symmetry : symmetries.getBaseSymmetries())
for (int i = 0; i < symmetries.dimension(); ++i)
if (IndicesUtils.getRawStateInt(indices.get(i))
!= IndicesUtils.getRawStateInt(indices.get(symmetry.newIndexOf(i)))) {
allowDiffStates = true;
break;
}
if(allowDiffStates && !CC.withMetric())
throw new IllegalArgumentException("Diff states in non metrix regim");
this.allowDiffStates = allowDiffStates;
}
@Override
public Tensor transform(Tensor tensor) {
if (!tensor.getIndices().getFreeIndices().equalsIgnoreOrder(indices))
return tensor;
if (symmetries.isEmpty())
return TensorNumber.createZERO();
Symmetries tensorSymmetries = IndexMappingUtils.getSymmetriesFromMappings(indices, tensor, allowDiffStates);
List generatedTensors = new ArrayList<>();
List generatedPermutations = new ArrayList<>();
OUT:
for (Permutation permutation : symmetries) {
for (Permutation generatedPermutation : generatedPermutations)
for (Permutation tensorSymmetry : tensorSymmetries)
if (permutation.equals(generatedPermutation.composition(tensorSymmetry)))
continue OUT;
generatedPermutations.add(permutation);
int[] newIndicesNames = permutation.permute(indicesNames);
IndexMappingDirectAllowingUnmapped im = new IndexMappingDirectAllowingUnmapped(indicesNames, newIndicesNames);
generatedTensors.add(ApplyIndexMappingDirectTransformation.INSTANCE.perform(tensor.clone(), im));
}
if (generatedTensors.isEmpty())
return TensorNumber.createZERO();
if (generatedTensors.size() == 1)
return generatedTensors.get(0);
if (multiplyFactorial) {
TensorNumber num = new TensorNumber(new ComplexElement(new NumberFraction(1, generatedTensors.size()), RationalElement.ZERO));
return new Product(num, new Sum(generatedTensors).equivalent());
} else
return new Sum(generatedTensors).equivalent();
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy