All Downloads are FREE. Search and download functionalities are using the official Maven repository.

cc.redberry.physics.feyncalc.UnitaryTraceTransformation Maven / Gradle / Ivy

Go to download

Redberry is an open source computer algebra system designed for tensor manipulation. It implements basic computer algebra system routines as well as complex tools for real computations in physics. This module contains the implementation of special routines needed in real physical problems. It contains tools for such problems like Feynman graphs and one-loop counterterms calculation etc.

The newest version!
/*
 * Redberry: symbolic tensor computations.
 *
 * Copyright (c) 2010-2015:
 *   Stanislav Poslavsky   
 *   Bolotin Dmitriy       
 *
 * This file is part of Redberry.
 *
 * Redberry is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * Redberry is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with Redberry. If not, see .
 */
package cc.redberry.physics.feyncalc;

import cc.redberry.core.context.CC;
import cc.redberry.core.context.NameAndStructureOfIndices;
import cc.redberry.core.context.OutputFormat;
import cc.redberry.core.graph.GraphType;
import cc.redberry.core.graph.PrimitiveSubgraph;
import cc.redberry.core.graph.PrimitiveSubgraphPartition;
import cc.redberry.core.indices.IndexType;
import cc.redberry.core.number.Complex;
import cc.redberry.core.parser.ParseToken;
import cc.redberry.core.parser.Parser;
import cc.redberry.core.parser.preprocessor.ChangeIndicesTypesAndTensorNames;
import cc.redberry.core.parser.preprocessor.TypesAndNamesTransformer;
import cc.redberry.core.tensor.*;
import cc.redberry.core.tensor.iterator.FromChildToParentIterator;
import cc.redberry.core.transformations.ExpandAndEliminateTransformation;
import cc.redberry.core.transformations.Transformation;
import cc.redberry.core.transformations.TransformationToStringAble;
import cc.redberry.core.transformations.options.Creator;
import cc.redberry.core.transformations.options.Options;
import cc.redberry.core.utils.IntArrayList;

import static cc.redberry.core.tensor.Tensors.multiply;
import static cc.redberry.core.tensor.Tensors.parseExpression;
import static cc.redberry.physics.feyncalc.TraceUtils.*;

/**
 * Calculates trace of unitary matrices.
 *
 * @author Dmitry Bolotin
 * @author Stanislav Poslavsky
 */
public final class UnitaryTraceTransformation implements TransformationToStringAble{
    private final int unitaryMatrix;
    private final IndexType matrixType;

    private final Expression pairProduct;
    private final Expression singleTrace;
    private final Transformation simplifications;

    @Creator
    public UnitaryTraceTransformation(@Options UnitarySimplifyOptions options) {
        this(options.unitaryMatrix, options.structureConstant, options.symmetricConstant, options.dimension);
    }

    /**
     * Creates transformation with given definitions.
     *
     * @param unitaryMatrix     unitary matrix
     * @param structureConstant structure constants of SU(N)
     * @param symmetricConstant symmetric constants of SU(N)
     * @param dimension         dimension
     */
    public UnitaryTraceTransformation(final SimpleTensor unitaryMatrix,
                                      final SimpleTensor structureConstant,
                                      final SimpleTensor symmetricConstant,
                                      final Tensor dimension) {
        checkUnitaryInput(unitaryMatrix, structureConstant, symmetricConstant, dimension);
        this.unitaryMatrix = unitaryMatrix.getName();
        final IndexType[] types = extractTypesFromMatrix(unitaryMatrix);
        this.matrixType = types[1];

        ChangeIndicesTypesAndTensorNames tokenTransformer = new ChangeIndicesTypesAndTensorNames(new TypesAndNamesTransformer() {
            @Override
            public int newIndex(int oldIndex, NameAndStructureOfIndices oldDescriptor) {
                return oldIndex;
            }

            @Override
            public IndexType newType(IndexType oldType, NameAndStructureOfIndices old) {
                if (oldType == IndexType.LatinLower)
                    return types[0];
                if (oldType == IndexType.Matrix1)
                    return types[1];
                return oldType;
            }

            @Override
            public String newName(String oldName, NameAndStructureOfIndices old) {
                switch (oldName) {
                    case unitaryMatrixName:
                        return unitaryMatrix.getStringName();
                    case structureConstantName:
                        return structureConstant.getStringName();
                    case symmetricConstantName:
                        return symmetricConstant.getStringName();
                    case dimensionName:
                        if (!(dimension instanceof Complex))
                            return dimension.toString(OutputFormat.Redberry);
                    default:
                        return oldName;
                }
            }
        });

        Expression pairProduct = (Expression) tokenTransformer.transform(pairProductToken).toTensor();
        if (dimension instanceof Complex)
            pairProduct = (Expression) parseExpression("N = " + dimension).transform(pairProduct);
        this.pairProduct = pairProduct;

        this.singleTrace = (Expression) tokenTransformer.transform(singleTraceToken).toTensor();
        //simplifications with SU(N) combinations
        this.simplifications = new UnitarySimplifyTransformation(dimension, tokenTransformer);
    }

    @Override
    public Tensor transform(Tensor t) {
        FromChildToParentIterator iterator = new FromChildToParentIterator(t);
        Tensor c;
        while ((c = iterator.next()) != null) {
            if (c instanceof SimpleTensor) {
                // Tr[T_a] = 0
                if (((SimpleTensor) c).getName() == unitaryMatrix && c.getIndices().getOfType(matrixType).getFree().size() == 0)
                    iterator.set(Complex.ZERO);
            } else if (c instanceof Product) {
                //selecting unitary matrices from product
                //extracting trace combinations from product
                Product product = (Product) c;
                int sizeOfIndexless = product.sizeOfIndexlessPart();
                ProductContent productContent = product.getContent();
                PrimitiveSubgraph[] subgraphs
                        = PrimitiveSubgraphPartition.calculatePartition(productContent, matrixType);

                //no unitary matrices in product
                if (subgraphs.length == 0)
                    continue;

                //positions of unitary matrices
                IntArrayList positionsOfMatrices = new IntArrayList();
                //calculated traces
                ProductBuilder calculatedTraces = new ProductBuilder();

                out:
                for (PrimitiveSubgraph subgraph : subgraphs) {
                    //not a trace
                    if (subgraph.getGraphType() != GraphType.Cycle)
                        continue;

                    //positions of unitary matrices
                    int[] partition = subgraph.getPartition();
                    for (int i = partition.length - 1; i >= 0; --i) {
                        partition[i] = sizeOfIndexless + partition[i];
                        //contains not only unitary matrices
                        if (!isUnitaryMatrixOrOne(product.get(partition[i]), unitaryMatrix))
                            continue out;
                    }

                    //calculate trace
                    calculatedTraces.put(traceOfProduct(product.select(partition)));
                    positionsOfMatrices.addAll(partition);
                }
                //compiling the result
                c = product.remove(positionsOfMatrices.toArray());
                c = multiply(c, calculatedTraces.build());
                iterator.set(simplifications.transform(c));
            }
        }
        return simplifications.transform(iterator.result());
    }

    private Tensor traceOfProduct(Tensor tensor) {
        Tensor oldTensor = tensor, newTensor;
        while (true) {
            newTensor = oldTensor;
            newTensor = simplifications.transform(newTensor);
            newTensor = singleTrace.transform(newTensor);
            newTensor = pairProduct.transform(newTensor);
            newTensor = ExpandAndEliminateTransformation.expandAndEliminate(newTensor);
            if (newTensor == oldTensor)
                break;
            oldTensor = newTensor;
        }
        return newTensor;
    }

    @Override
    public String toString(OutputFormat outputFormat) {
        return "UnitaryTrace";
    }

    @Override
    public String toString() {
        return toString(CC.getDefaultOutputFormat());
    }

    private static boolean isUnitaryMatrixOrOne(Tensor tensor, int unitaryMatrix) {
        if (tensor instanceof SimpleTensor) {
            int name = ((SimpleTensor) tensor).getName();
            return name == unitaryMatrix || CC.getNameManager().isKroneckerOrMetric(name);
        }
        return false;
    }

    /*
     * Substitutions
     */

    private static final Parser parser;
    /**
     * T_a*T_b  = 1/2N g_ab + I/2*f_abc*T^c + 1/2*d_abc*T^c
     */
    private static final ParseToken pairProductToken;

    private static final ParseToken singleTraceToken;

    static {
        parser = CC.current().getParseManager().getParser();

        pairProductToken = parser.parse("T_a^a'_c'*T_b^c'_b' = 1/(2*N)*g_ab*d^a'_b' + I/2*F_abc*T^ca'_b' + 1/2*D_abc*T^ca'_b'");
        singleTraceToken = parser.parse("T_a^a'_a' = 0");
    }


}




© 2015 - 2024 Weber Informatics LLC | Privacy Policy