
cc.redberry.physics.feyncalc.InverseOrderOfMatricesTransformation Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of physics Show documentation
Show all versions of physics Show documentation
Redberry is an open source computer algebra system designed for tensor
manipulation. It implements basic computer algebra system routines as well as
complex tools for real computations in physics.
This module contains the implementation of special routines needed in
real physical problems. It contains tools for such problems like Feynman graphs
and one-loop counterterms calculation etc.
/*
* Redberry: symbolic tensor computations.
*
* Copyright (c) 2010-2013:
* Stanislav Poslavsky
* Bolotin Dmitriy
*
* This file is part of Redberry.
*
* Redberry is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Redberry is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Redberry. If not, see .
*/
package cc.redberry.physics.feyncalc;
import cc.redberry.core.context.CC;
import cc.redberry.core.graph.GraphType;
import cc.redberry.core.graph.PrimitiveSubgraph;
import cc.redberry.core.graph.PrimitiveSubgraphPartition;
import cc.redberry.core.indexmapping.IndexMapping;
import cc.redberry.core.indexmapping.Mapping;
import cc.redberry.core.indices.IndexType;
import cc.redberry.core.indices.Indices;
import cc.redberry.core.tensor.*;
import cc.redberry.core.tensor.iterator.FromChildToParentIterator;
import cc.redberry.core.transformations.Transformation;
import cc.redberry.core.utils.ArraysUtils;
import java.util.Arrays;
/**
* @author Dmitry Bolotin
* @author Stanislav Poslavsky
*/
public final class InverseOrderOfMatricesTransformation implements Transformation {
private final IndexType type;
public InverseOrderOfMatricesTransformation(IndexType type) {
assertType(type);
this.type = type;
}
@Override
public Tensor transform(Tensor t) {
return inverseOrderOfMatrices1(t, type);
}
public static void assertType(IndexType type) {
if (CC.isMetric(type.getType()))
throw new IllegalArgumentException("Type should be non-metric.");
}
public static Tensor inverseOrderOfMatrices(Tensor t, IndexType type) {
assertType(type);
return inverseOrderOfMatrices1(t, type);
}
private static Tensor inverseOrderOfMatrices1(Tensor t, IndexType type) {
FromChildToParentIterator iterator = new FromChildToParentIterator(t);
Tensor c;
while ((c = iterator.next()) != null)
if (c instanceof Product)
iterator.set(inverseOrderInProduct((Product) c, type));
return iterator.result();
}
private static Tensor inverseOrderInProduct(Product product, IndexType type) {
ProductContent pc = product.getContent();
PrimitiveSubgraph[] subgraphs = PrimitiveSubgraphPartition.calculatePartition(pc, type);
Tensor[] data = pc.getDataCopy();
boolean somethingDone = false;
for (PrimitiveSubgraph ps : subgraphs) {
if (ps.getGraphType() == GraphType.Graph)
throw new IllegalArgumentException("Not a product of matrices.");
if (ps.getGraphType() != GraphType.Line)
continue;
int[] partition = ps.getPartition();
Tensor left = null, right = null;
Indices leftIndices = null, rightIndices = null;
Indices leftSubIndices = null, rightSubIndices = null;
int leftUpperCount, leftLowerCount, rightUpperCount, rightLowerCount, luCount = -1;
boolean leftSkip = false, rightSkip = false, leftMatrix = false, rightMatrix = false;
for (int leftPointer = 0, rightPointer = partition.length - 1;
leftPointer < rightPointer; ++leftPointer, --rightPointer) {
if (!leftSkip) {
left = data[partition[leftPointer]];
leftIndices = left.getIndices();
leftSubIndices = leftIndices.getOfType(type);
leftUpperCount = leftSubIndices.getUpper().length();
leftLowerCount = leftSubIndices.getLower().length();
if (leftUpperCount != leftLowerCount) {
if (leftLowerCount != 0 && leftUpperCount != 0)
throw new IllegalArgumentException("Not a product of matrices.");
leftMatrix = false;
} else {
if (luCount == -1)
luCount = leftUpperCount;
else if (luCount != leftUpperCount)
throw new IllegalArgumentException("Not a product of matrices.");
leftMatrix = true;
}
}
if (!rightSkip) {
right = data[partition[rightPointer]];
rightIndices = right.getIndices();
rightSubIndices = rightIndices.getOfType(type);
rightUpperCount = rightSubIndices.getUpper().length();
rightLowerCount = rightSubIndices.getLower().length();
if (rightUpperCount != rightLowerCount) {
if (rightUpperCount != 0 && rightLowerCount != 0)
throw new IllegalArgumentException("Not a product of matrices.");
rightMatrix = false;
} else {
if (luCount == -1)
luCount = rightUpperCount;
else if (luCount != rightUpperCount)
throw new IllegalArgumentException("Not a product of matrices.");
rightMatrix = true;
}
}
//dump
leftSkip = rightSkip = false;
if (!leftMatrix && !rightMatrix)
continue;
else if (leftMatrix && !rightMatrix) {
leftSkip = true;
--leftPointer;
} else if (!leftMatrix && rightMatrix) {
rightSkip = true;
++rightPointer;
} else {
somethingDone = true;
left = setIndices(left, leftIndices, renameOfType(leftIndices, leftSubIndices, rightSubIndices));
right = setIndices(right, rightIndices, renameOfType(rightIndices, rightSubIndices, leftSubIndices));
data[partition[leftPointer]] = right;
data[partition[rightPointer]] = left;
}
}
}
if (!somethingDone)
return product;
return Tensors.multiply(product.getIndexlessSubProduct(), Tensors.multiply(data));
}
private static Tensor setIndices(Tensor t, Indices from, Indices to) {
return ApplyIndexMapping.applyIndexMapping(t,
new Mapping(from.getAllIndices().copy(), to.getAllIndices().copy()), new int[0]);
}
private static final Indices renameOfType(Indices indices, Indices fromSubIndices, Indices toSubIndices) {
return indices.applyIndexMapping(new Mapper(fromSubIndices, toSubIndices));
}
private static final class Mapper implements IndexMapping {
private final int[] from, to;
private Mapper(Indices fromSubIndices, Indices toSubIndices) {
from = fromSubIndices.getAllIndices().copy();
to = toSubIndices.getAllIndices().copy();
ArraysUtils.quickSort(from, to);
}
@Override
public int map(int from) {
int position;
if ((position = Arrays.binarySearch(this.from, from)) >= 0)
return to[position];
return from;
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy