All Downloads are FREE. Search and download functionalities are using the official Maven repository.

cc.redberry.physics.oneloopdiv.Benchmarks Maven / Gradle / Ivy

/*
 * Redberry: symbolic tensor computations.
 *
 * Copyright (c) 2010-2013:
 *   Stanislav Poslavsky   
 *   Bolotin Dmitriy       
 *
 * This file is part of Redberry.
 *
 * Redberry is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * Redberry is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with Redberry. If not, see .
 */
package cc.redberry.physics.oneloopdiv;

import cc.redberry.core.context.CC;
import cc.redberry.core.context.OutputFormat;
import cc.redberry.core.indices.IndexType;
import cc.redberry.core.tensor.Expression;
import cc.redberry.core.tensor.Tensors;
import cc.redberry.core.transformations.EliminateMetricsTransformation;
import cc.redberry.core.transformations.Transformation;
import cc.redberry.core.transformations.expand.ExpandTransformation;
import cc.redberry.core.transformations.factor.FactorTransformation;

import java.io.IOException;
import java.io.OutputStream;
import java.io.PrintStream;

/**
 * This class contains several performance benchmarks of one-loop divergences
 * calculation. Here is the summary:
 * 

*

*

 * Machine:
 *  Processor family: Intel(R) Core(TM) i5 CPU M 430  @ 2.27GHz.
 *  -Xmx value : 3g.
 *  Max memory used: 1.2g.
 *  Java version: 1.7.0_03 HotSpot 64-bit server VM
 *
 * Benchmark results:
 *  Minimal second order : 2 s.
 *  Minimal fourth order : 2 s.
 *  Vector field : 19 s.
 *  Gravity ghosts : 19 s.
 *  Squared vector field : 313 s.
 *  Lambda gauge gravity : 612 s.
 *  Spin 3 ghosts : 920 s.
 * 
*
 * Machine:
 *  Processor family: AMD Phenom(tm) II X6 1100T Processor
 *  -Xmx value : 3g
 *  Max memory used: 1.2g
 *  Java version: 1.7.0_04 HotSpot 64-bit server VM
 *
 * Benchmark results:
 *  Minimal second order : 1 s.
 *  Minimal fourth order : 1 s.
 *  Vector field : 14 s.
 *  Gravity ghosts : 14 s.
 *  Squared vector field : 219 s.
 *  Lambda gauge gravity : 521 s.
 *  Spin 3 ghosts : 627 s.
 * 
* * @author Stanislav Poslavsky */ public final class Benchmarks { private Benchmarks() { } private static final OutputStream dummyOutputStream = new OutputStream() { @Override public void write(int b) throws IOException { } }; private static final PrintStream defaultOutputStream = System.out; private static void println(String str) { defaultOutputStream.println(str); } public static void main(String[] args) { //Processor family: Intel(R) Core(TM) i5 CPU M 430 @ 2.27GHz. //-Xmx value : 3g. //Max memory used: 1.2g. //Java version: 1.7.0_03 HotSpot 64-bit server VM //Benchmark results: // //Minimal second order : 2 s. //Minimal fourth order : 2 s. //Vector field : 19 s. //Gravity ghosts : 19 s. //Squared vector field : 313 s. //Lambda gauge gravity : 612 s. //Spin 3 ghosts : 920 s. //Processor family: AMD Phenom(tm) II X6 1100T Processor //-Xmx value : 3g //Max memory used: 1.2g //Java version: 1.7.0_04 HotSpot 64-bit server VM //Benchmark results: // //Minimal second order : 1 s. //Minimal fourth order : 1 s. //Vector field : 14 s. //Gravity ghosts : 14 s. //Squared vector field : 219 s. //Lambda gauge gravity : 521 s. //Spin 3 ghosts : 627 s. //suppressing output System.setOut(new PrintStream(dummyOutputStream)); //burning JVM burnJVM(); Timer timer = new Timer(); timer.start(); testMinimalSecondOrderOperator(); println("Minimal second order : " + timer.elapsedTimeInSeconds() + " s."); timer.restart(); testMinimalFourthOrderOperator(); println("Minimal fourth order : " + timer.elapsedTimeInSeconds() + " s."); timer.restart(); testVectorField(); println("Vector field : " + timer.elapsedTimeInSeconds() + " s."); timer.restart(); testGravityGhosts(); println("Gravity ghosts : " + timer.elapsedTimeInSeconds() + " s."); timer.restart(); testSquaredVectorField(); println("Squared vector field : " + timer.elapsedTimeInSeconds() + " s."); timer.restart(); testLambdaGaugeGravity(); println("Lambda gauge gravity : " + timer.elapsedTimeInSeconds() + " s."); timer.restart(); testSpin3Ghosts(); println("Spin 3 ghosts : " + timer.elapsedTimeInSeconds() + " s."); timer.restart(); } /** * Warm up the JVM. */ public static void burnJVM() { testVectorField(); for (int i = 0; i < 10; ++i) testMinimalFourthOrderOperator(); } static class Timer { private long start, stop; public Timer() { } void start() { start = System.currentTimeMillis(); } long elapsedTime() { return System.currentTimeMillis() - start; } long elapsedTimeInSeconds() { return (System.currentTimeMillis() - start) / 1000; } void restart() { start(); } } /** * This method calculates one-loop counterterms of the vector field in the * non-minimal gauge. */ public static void testVectorField() { CC.setDefaultOutputFormat(OutputFormat.RedberryConsole); Tensors.addSymmetry("P_\\mu\\nu", IndexType.GreekLower, false, 1, 0); Expression KINV = Tensors.parseExpression("KINV_\\alpha^\\beta=d_\\alpha^\\beta+\\gamma*n_\\alpha*n^\\beta"); Expression K = Tensors.parseExpression("K^{\\mu\\nu}_\\alpha^{\\beta}=g^{\\mu\\nu}*d_{\\alpha}^{\\beta}-\\lambda/2*(g^{\\mu\\beta}*d_\\alpha^\\nu+g^{\\nu\\beta}*d_\\alpha^\\mu)"); Expression S = Tensors.parseExpression("S^\\rho^\\mu_\\nu=0"); Expression W = Tensors.parseExpression("W^{\\alpha}_{\\beta}=P^{\\alpha}_{\\beta}+(\\lambda/2)*R^\\alpha_\\beta"); Expression F = Tensors.parseExpression("F_\\mu\\nu\\alpha\\beta=R_\\mu\\nu\\alpha\\beta"); Expression lambda = Tensors.parseExpression("\\lambda=gamma/(1+gamma)"); Expression gamma = Tensors.parseExpression("\\gamma=gamma"); KINV = (Expression) gamma.transform(lambda.transform(KINV)); K = (Expression) gamma.transform(lambda.transform(K)); S = (Expression) gamma.transform(lambda.transform(S)); W = (Expression) gamma.transform(lambda.transform(W)); OneLoopInput input = new OneLoopInput(2, KINV, K, S, W, null, null, F); OneLoopCounterterms action = OneLoopCounterterms.calculateOneLoopCounterterms(input); } /** * This method calculates one-loop counterterms of the squared vector field * in the non-minimal gauge. */ public static void testSquaredVectorField() { CC.setDefaultOutputFormat(OutputFormat.RedberryConsole); Tensors.addSymmetry("P_\\mu\\nu", IndexType.GreekLower, false, 1, 0); Expression KINV = Tensors.parseExpression("KINV_\\alpha^\\beta=d_\\alpha^\\beta+(2*\\gamma+Power[\\gamma,2])*n_\\alpha*n^\\beta"); Expression K = Tensors.parseExpression("K^{\\mu\\nu\\gamma\\delta}_\\alpha^{\\beta}=" + "d_\\alpha^\\beta*1/3*(g^{\\mu\\nu}*g^{\\gamma\\delta}+ g^{\\mu\\gamma}*g^{\\nu\\delta}+ g^{\\mu\\delta}*g^{\\nu\\gamma})" + "+1/12*(-2*\\lambda+Power[\\lambda,2])*(" + "g^{\\mu\\nu}*d_\\alpha^\\gamma*g^{\\beta\\delta}" + "+g^{\\mu\\nu}*d_\\alpha^\\delta*g^{\\beta\\gamma}" + "+g^{\\mu\\gamma}*d_\\alpha^\\nu*g^{\\beta\\delta}" + "+g^{\\mu\\gamma}*d_\\alpha^\\delta*g^{\\beta\\nu}" + "+g^{\\mu\\delta}*d_\\alpha^\\nu*g^{\\beta\\gamma}" + "+g^{\\mu\\delta}*d_\\alpha^\\gamma*g^{\\beta\\nu}" + "+g^{\\nu\\gamma}*d_\\alpha^\\mu*g^{\\beta\\delta}" + "+g^{\\nu\\gamma}*d_\\alpha^\\delta*g^{\\beta\\mu}" + "+g^{\\nu\\delta}*d_\\alpha^\\mu*g^{\\beta\\gamma}" + "+g^{\\nu\\delta}*d_\\alpha^\\gamma*g^{\\beta\\mu}" + "+g^{\\gamma\\delta}*d_\\alpha^\\mu*g^{\\beta\\nu}" + "+g^{\\gamma\\delta}*d_\\alpha^\\nu*g^{\\beta\\mu})"); Expression S = Tensors.parseExpression("S^\\mu\\nu\\rho\\alpha\\beta=0"); //W^{\\mu \\nu }_{\\alpha }^{\\beta } = d^{\\nu }_{\\alpha }*R^{\\beta \\mu }+d^{\\mu }_{\\alpha }*R^{\\beta \\nu }+g^{\\mu \\beta }*R_{\\alpha }^{\\nu }+2*P_{\\alpha }^{\\beta }*g^{\\mu \\nu }+-2/3*d_{\\alpha }^{\\beta }*R^{\\mu \\nu } Expression W = Tensors.parseExpression("W^{\\mu\\nu}_\\alpha^\\beta=" + "2*P_{\\alpha}^{\\beta}*g^{\\mu\\nu}-2/3*R^\\mu\\nu*d_\\alpha^\\beta" + "-\\lambda/2*P_\\alpha^\\mu*g^\\nu\\beta" + "-\\lambda/2*P_\\alpha^\\nu*g^\\mu\\beta" + "-\\lambda/2*P^\\beta\\mu*d^\\nu_\\alpha" + "-\\lambda/2*P^\\beta\\nu*d^\\mu_\\alpha" + "+1/6*(\\lambda-2*Power[\\lambda,2])*(" + "R_\\alpha^\\mu*g^\\nu\\beta" + "+R_\\alpha^\\nu*g^\\mu\\beta" + "+R^\\beta\\mu*d^\\nu_\\alpha" + "+R^\\beta\\nu*d^\\mu_\\alpha)" + "+1/6*(2*\\lambda-Power[\\lambda,2])*" + "(R_\\alpha^\\mu\\beta\\nu+R_\\alpha^\\nu\\beta\\mu)" + "+1/2*(2*\\lambda-Power[\\lambda,2])*g^\\mu\\nu*R_\\alpha^\\beta"); Expression N = Tensors.parseExpression("N^\\rho\\alpha\\beta=0"); Expression M = Tensors.parseExpression("M_\\alpha^\\beta = " + "P_\\alpha\\mu*P^\\mu\\beta-1/2*R_\\mu\\nu\\gamma\\alpha*R^\\mu\\nu\\gamma\\beta" + "+\\lambda/2*P_\\alpha\\mu*R^\\mu\\beta" + "+\\lambda/2*P_\\mu\\nu*R^\\mu_\\alpha^\\nu\\beta" + "+1/6*(\\lambda-2*Power[\\lambda,2])*R_\\alpha\\mu*R^\\mu\\beta" + "+1/12*(4*\\lambda+7*Power[\\lambda,2])*R_\\mu\\alpha\\nu^\\beta*R^\\mu\\nu" + "+1/4*(2*\\lambda-Power[\\lambda,2])*R_\\alpha\\mu\\nu\\gamma*R^\\gamma\\mu\\nu\\beta"); Expression F = Tensors.parseExpression("F_\\mu\\nu\\alpha\\beta=R_\\mu\\nu\\alpha\\beta"); Expression lambda = Tensors.parseExpression("\\lambda=gamma/(1+gamma)"); Expression gamma = Tensors.parseExpression("\\gamma=gamma"); KINV = (Expression) gamma.transform(lambda.transform(KINV)); K = (Expression) gamma.transform(lambda.transform(K)); S = (Expression) gamma.transform(lambda.transform(S)); W = (Expression) gamma.transform(lambda.transform(W)); M = (Expression) gamma.transform(lambda.transform(M)); OneLoopInput input = new OneLoopInput(4, KINV, K, S, W, N, M, F); OneLoopCounterterms action = OneLoopCounterterms.calculateOneLoopCounterterms(input); } /** * This method calculates ghosts contribution to the one-loop counterterms * of the gravitational field in the non-minimal gauge. The gauge fixing * term in LaTeX notation: *
     *       S_{gf} = -1/2 \int d^4 x \sqrt{-g} g_{\mu\nu} \chi^\mu \chi^\nu,
     *  where
     *       \chi^\mu = 1/\sqrt{1+\lambda} (g^{\mu\alpha} \nabla^\beta h_{\alpha\beta}-1/2 g^{\alpha\beta} \nabla^\mu h_{\alpha\beta})
     * 
*/ public static void testGravityGhosts() { CC.setDefaultOutputFormat(OutputFormat.RedberryConsole); Tensors.addSymmetry("P_\\mu\\nu", IndexType.GreekLower, false, 1, 0); Expression KINV = Tensors.parseExpression("KINV_\\alpha^\\beta=d_\\alpha^\\beta+gamma*n_\\alpha*n^\\beta"); Expression K = Tensors.parseExpression("K^{\\mu\\nu}_\\alpha^{\\beta}=d_\\alpha^\\beta*g^\\mu\\nu-1/2*beta*(d_\\alpha^\\mu*g^\\nu\\beta+d_\\alpha^\\nu*g^\\mu\\beta)"); Expression S = Tensors.parseExpression("S^\\rho^\\mu_\\nu=0"); Expression W = Tensors.parseExpression("W^{\\alpha}_{\\beta}=(1+beta/2)*R^\\alpha_\\beta"); Expression F = Tensors.parseExpression("F_\\mu\\nu\\alpha\\beta=R_\\mu\\nu\\alpha\\beta"); Expression beta = Tensors.parseExpression("beta=gamma/(1+gamma)"); KINV = (Expression) beta.transform(KINV); K = (Expression) beta.transform(K); S = (Expression) beta.transform(S); W = (Expression) beta.transform(W); OneLoopInput input = new OneLoopInput(2, KINV, K, S, W, null, null, F); OneLoopCounterterms action = OneLoopCounterterms.calculateOneLoopCounterterms(input); } /** * This method calculates the main contribution to the one-loop counterterms * of the gravitational field in the non-minimal gauge. The gauge fixing * term in LaTeX notation: *
     *       S_{gf} = -1/2 \int d^4 x \sqrt{-g} g_{\mu\nu} \chi^\mu \chi^\nu,
     *  where
     *       \chi^\mu = 1/\sqrt{1+\lambda} (g^{\mu\alpha} \nabla^\beta h_{\alpha\beta}-1/2 g^{\alpha\beta} \nabla^\mu h_{\alpha\beta})
     * 
*/ public static void testLambdaGaugeGravity() { CC.setDefaultOutputFormat(OutputFormat.RedberryConsole); Expression KINV = Tensors.parseExpression("KINV_\\alpha\\beta^\\gamma\\delta = " + "(d_\\alpha^\\gamma*d_\\beta^\\delta+d_\\beta^\\gamma*d_\\alpha^\\delta)/2+" + "la/2*(" + "d_\\alpha^\\gamma*n_\\beta*n^\\delta" + "+d_\\alpha^\\delta*n_\\beta*n^\\gamma" + "+d_\\beta^\\gamma*n_\\alpha*n^\\delta" + "+d_\\beta^\\delta*n_\\alpha*n^\\gamma)" + "-la*g^\\gamma\\delta*n_\\alpha*n_\\beta"); Expression K = Tensors.parseExpression("K^\\mu\\nu_\\alpha\\beta^\\gamma\\delta = " + "g^\\mu\\nu*(d_\\alpha^\\gamma*d_\\beta^\\delta+d_\\beta^\\gamma*d_\\alpha^\\delta)/2" + "-la/(4*(1+la))*(" + "d_\\alpha^\\gamma*d_\\beta^\\mu*g^\\delta\\nu" + "+d_\\alpha^\\gamma*d_\\beta^\\nu*g^\\delta\\mu" + "+d_\\alpha^\\delta*d_\\beta^\\mu*g^\\gamma\\nu" + "+d_\\alpha^\\delta*d_\\beta^\\nu*g^\\gamma\\mu" + "+d_\\beta^\\gamma*d_\\alpha^\\mu*g^\\delta\\nu" + "+d_\\beta^\\gamma*d_\\alpha^\\nu*g^\\delta\\mu" + "+d_\\beta^\\delta*d_\\alpha^\\mu*g^\\gamma\\nu" + "+d_\\beta^\\delta*d_\\alpha^\\nu*g^\\gamma\\mu)" + "+la/(2*(1+la))*g^\\gamma\\delta*(d_\\alpha^\\mu*d_\\beta^\\nu+d_\\alpha^\\nu*d_\\beta^\\mu)"); Expression S = Tensors.parseExpression("S^\\rho_{\\alpha\\beta}^{\\gamma\\delta}=0"); Expression W = Tensors.parseExpression("W_{\\alpha\\beta}^{\\gamma\\delta}=P_\\alpha\\beta^\\gamma\\delta" + "-la/(2*(1+la))*(R_\\alpha^\\gamma_\\beta^\\delta+R_\\alpha^\\delta_\\beta^\\gamma)" + "+la/(4*(1+la))*(" + "d_\\alpha^\\gamma*R_\\beta^\\delta" + "+d_\\alpha^\\delta*R_\\beta^\\gamma" + "+d_\\beta^\\gamma*R_\\alpha^\\delta" + "+d_\\beta^\\delta*R_\\alpha^\\gamma)"); Expression P = Tensors.parseExpression("P_\\gamma\\delta^\\mu\\nu = " + "R_\\gamma^\\mu_\\delta^\\nu+R_\\gamma^\\nu_\\delta^\\mu" + "+1/2*(" + "d_\\gamma^\\mu*R_\\delta^\\nu" + "+d_\\gamma^\\nu*R_\\delta^\\mu" + "+d_\\delta^\\mu*R_\\gamma^\\nu" + "+d_\\delta^\\nu*R_\\gamma^\\mu)" + "-g^\\mu\\nu*R_\\gamma\\delta" + "-R^\\mu\\nu*g_\\gamma\\delta" + "+(-d_\\gamma^\\mu*d_\\delta^\\nu-d_\\gamma^\\nu*d_\\delta^\\mu+g^\\mu\\nu*g_\\gamma\\delta)*R/2"); W = (Expression) P.transform(W); Expression F = Tensors.parseExpression("F_\\mu\\nu^\\lambda\\delta_\\rho\\tau = " + "R^\\lambda_\\rho\\mu\\nu*d^\\delta_\\tau+R^\\delta_\\tau\\mu\\nu*d^\\lambda_\\rho"); OneLoopInput input = new OneLoopInput(2, KINV, K, S, W, null, null, F); OneLoopCounterterms action = OneLoopCounterterms.calculateOneLoopCounterterms(input); } /** * This method calculates one-loop counterterms of the second order minimal * operator. */ public static void testMinimalSecondOrderOperator() { //TIME = 6.1 s CC.setDefaultOutputFormat(OutputFormat.RedberryConsole); Expression KINV = Tensors.parseExpression("KINV_\\alpha^\\beta=d_\\alpha^\\beta"); Expression K = Tensors.parseExpression("K^\\mu\\nu_\\alpha^\\beta=d_\\alpha^\\beta*g^{\\mu\\nu}"); Expression S = Tensors.parseExpression("S^\\mu\\alpha\\beta=0"); Expression W = Tensors.parseExpression("W_\\alpha^\\beta=W_\\alpha^\\beta"); Expression F = Tensors.parseExpression("F_\\mu\\nu\\alpha\\beta=F_\\mu\\nu\\alpha\\beta"); OneLoopInput input = new OneLoopInput(2, KINV, K, S, W, null, null, F); OneLoopCounterterms action = OneLoopCounterterms.calculateOneLoopCounterterms(input); } /** * This method calculates one-loop counterterms of the second order minimal * operator in Barvinsky and Vilkovisky notation (Phys. Rep. 119 ( 1985) * 1-74 ). */ public static void testMinimalSecondOrderOperatorBarvinskyVilkovisky() { //TIME = 4.5 s CC.setDefaultOutputFormat(OutputFormat.RedberryConsole); //Phys. Rep. 119 ( 1985) 1-74 Expression KINV = Tensors.parseExpression("KINV_\\alpha^\\beta=d_\\alpha^\\beta"); Expression K = Tensors.parseExpression("K^\\mu\\nu_\\alpha^\\beta=d_\\alpha^\\beta*g^{\\mu\\nu}"); Expression S = Tensors.parseExpression("S^\\mu\\alpha\\beta=0"); //here P^... from BV equal to W^... Expression W = Tensors.parseExpression("W_\\alpha^\\beta=W_\\alpha^\\beta-1/6*R*d_\\alpha^\\beta"); Expression F = Tensors.parseExpression("F_\\mu\\nu\\alpha\\beta=F_\\mu\\nu\\alpha\\beta"); OneLoopInput input = new OneLoopInput(2, KINV, K, S, W, null, null, F); OneLoopCounterterms action = OneLoopCounterterms.calculateOneLoopCounterterms(input); } /** * This method calculates one-loop counterterms of the fourth order minimal * operator. */ public static void testMinimalFourthOrderOperator() { //TIME = 6.2 s CC.setDefaultOutputFormat(OutputFormat.RedberryConsole); Tensors.addSymmetry("P_\\mu\\nu", IndexType.GreekLower, false, 1, 0); Expression KINV = Tensors.parseExpression("KINV_\\alpha^\\beta=d_\\alpha^\\beta"); Expression K = Tensors.parseExpression("K^{\\mu\\nu\\gamma\\delta}_\\alpha^{\\beta}=" + "d_\\alpha^\\beta*1/3*(g^{\\mu\\nu}*g^{\\gamma\\delta}+ g^{\\mu\\gamma}*g^{\\nu\\delta}+ g^{\\mu\\delta}*g^{\\nu\\gamma})"); Expression S = Tensors.parseExpression("S^\\mu\\nu\\rho\\alpha\\beta=0"); Expression W = Tensors.parseExpression("W^{\\mu\\nu}_\\alpha^\\beta=0*W^{\\mu\\nu}_\\alpha^\\beta"); Expression N = Tensors.parseExpression("N^\\rho\\alpha\\beta=0*N^\\rho\\alpha\\beta"); Expression M = Tensors.parseExpression("M_\\alpha^\\beta = 0*M_\\alpha^\\beta"); Expression F = Tensors.parseExpression("F_\\mu\\nu\\alpha\\beta=F_\\mu\\nu\\alpha\\beta"); OneLoopInput input = new OneLoopInput(4, KINV, K, S, W, N, M, F); OneLoopCounterterms action = OneLoopCounterterms.calculateOneLoopCounterterms(input); } /** * This method calculates ghosts contribution to the one-loop counterterms * of the theory with spin = 3. */ public static void testSpin3Ghosts() { //TIME = 990 s CC.setDefaultOutputFormat(OutputFormat.RedberryConsole); Expression KINV = Tensors.parseExpression( "KINV^{\\alpha\\beta}_{\\mu\\nu} = P^{\\alpha\\beta}_{\\mu\\nu}-1/4*c*g_{\\mu\\nu}*g^{\\alpha\\beta}+" + "(1/4)*b*(n_{\\mu}*n^{\\alpha}*d^{\\beta}_{\\nu}+n_{\\mu}*n^{\\beta}*d^{\\alpha}_{\\nu}+n_{\\nu}*n^{\\alpha}*d^{\\beta}_{\\mu}+n_{\\nu}*n^{\\beta}*d^{\\alpha}_{\\mu})+" + "c*(n_{\\mu}*n_{\\nu}*g^{\\alpha\\beta}+n^{\\alpha}*n^{\\beta}*g_{\\mu\\nu})" + "-c*b*n_{\\mu}*n_{\\nu}*n^{\\alpha}*n^{\\beta}"); Expression K = Tensors.parseExpression( "K^{\\mu\\nu}^{\\alpha\\beta}_{\\gamma\\delta} = g^{\\mu\\nu}*P^{\\alpha\\beta}_{\\gamma\\delta}+" + "(1+2*beta)*((1/4)*(d^{\\mu}_{\\gamma}*g^{\\alpha \\nu}*d^{\\beta}_{\\delta} + d^{\\mu}_{\\delta}*g^{\\alpha \\nu}*d^{\\beta}_{\\gamma}+d^{\\mu}_{\\gamma}*g^{\\beta \\nu}*d^{\\alpha}_{\\delta}+ d^{\\mu}_{\\delta}*g^{\\beta \\nu}*d^{\\alpha}_{\\gamma})+" + "(1/4)*(d^{\\nu}_{\\gamma}*g^{\\alpha \\mu}*d^{\\beta}_{\\delta} + d^{\\nu}_{\\delta}*g^{\\alpha \\mu}*d^{\\beta}_{\\gamma}+d^{\\nu}_{\\gamma}*g^{\\beta \\mu}*d^{\\alpha}_{\\delta}+ d^{\\nu}_{\\delta}*g^{\\beta \\mu}*d^{\\alpha}_{\\gamma}) -" + "(1/4)*(g_{\\gamma\\delta}*g^{\\mu \\alpha}*g^{\\nu \\beta}+g_{\\gamma\\delta}*g^{\\mu \\beta}*g^{\\nu \\alpha})-" + "(1/4)*(g^{\\alpha\\beta}*d^{\\mu}_{\\gamma}*d^{\\nu}_{\\delta}+g^{\\alpha\\beta}*d^{\\mu}_{\\delta}*d^{\\nu}_{\\gamma})+(1/8)*g^{\\mu\\nu}*g_{\\gamma\\delta}*g^{\\alpha\\beta})"); Expression P = Tensors.parseExpression( "P^{\\alpha\\beta}_{\\mu\\nu} = (1/2)*(d^{\\alpha}_{\\mu}*d^{\\beta}_{\\nu}+d^{\\alpha}_{\\nu}*d^{\\beta}_{\\mu})-(1/4)*g_{\\mu\\nu}*g^{\\alpha\\beta}"); KINV = (Expression) P.transform(KINV); K = (Expression) P.transform(K); Expression consts[] = { Tensors.parseExpression("c=(1+2*beta)/(5+6*beta)"), Tensors.parseExpression("b=-(1+2*beta)/(1+beta)") }; for (Expression cons : consts) { KINV = (Expression) cons.transform(KINV); K = (Expression) cons.transform(K); } Expression S = (Expression) Tensors.parse("S^\\rho^{\\alpha\\beta}_{\\mu\\nu}=0"); Expression W = (Expression) Tensors.parse("W^{\\alpha\\beta}_{\\mu\\nu}=0"); Expression F = Tensors.parseExpression("F_\\mu\\nu\\alpha\\beta\\gamma\\delta=0"); Transformation[] ds = OneLoopUtils.antiDeSitterBackground(); Transformation[] tr = new Transformation[ds.length + 1]; System.arraycopy(ds, 0, tr, 0, ds.length); tr[tr.length - 1] = FactorTransformation.FACTOR; OneLoopInput input = new OneLoopInput(2, KINV, K, S, W, null, null, F, tr); OneLoopCounterterms action = OneLoopCounterterms.calculateOneLoopCounterterms(input); } /** * This method calculates the main contribution to the one-loop counterterms * of the gravitational field in general the non-minimal gauge. The gauge * fixing term in LaTeX notation: *
     *       S_{gf} = -1/2 \int d^4 x \sqrt{-g} g_{\mu\nu} \chi^\mu \chi^\nu,
     *  where
     *       \chi^\mu = 1/\sqrt{1+\lambda} (g^{\mu\alpha} \nabla^\beta h_{\alpha\beta}-(1+\beta)/2 g^{\alpha\beta} \nabla^\mu h_{\alpha\beta})
     * 
*/ public static void testNonMinimalGaugeGravity() { //FIXME works more than hour CC.setDefaultOutputFormat(OutputFormat.RedberryConsole); Tensors.addSymmetry("R_\\mu\\nu", IndexType.GreekLower, false, new int[]{1, 0}); Tensors.addSymmetry("R_\\mu\\nu\\alpha\\beta", IndexType.GreekLower, true, new int[]{0, 1, 3, 2}); Tensors.addSymmetry("R_\\mu\\nu\\alpha\\beta", IndexType.GreekLower, false, new int[]{2, 3, 0, 1}); Expression KINV = Tensors.parseExpression("KINV_\\alpha\\beta^\\gamma\\delta = " + "(d_\\alpha^\\gamma*d_\\beta^\\delta+d_\\beta^\\gamma*d_\\alpha^\\delta)/2-" + "la/2*(" + "d_\\alpha^\\gamma*n_\\beta*n^\\delta" + "+d_\\alpha^\\delta*n_\\beta*n^\\gamma" + "+d_\\beta^\\gamma*n_\\alpha*n^\\delta" + "+d_\\beta^\\delta*n_\\alpha*n^\\gamma)" + "-ga*(g_\\alpha\\beta*n^\\gamma*n^\\delta+g^\\gamma\\delta*n_\\alpha*n_\\beta)" + "-1/2*g_\\alpha\\beta*g^\\gamma\\delta" + "+2*ga*(ga*la-2*ga+2*la)*n_\\alpha*n_\\beta*n^\\gamma*n^\\delta"); Expression K = Tensors.parseExpression("K^\\mu\\nu_\\alpha\\beta^\\gamma\\delta = " + "g^\\mu\\nu*(d_\\alpha^\\gamma*d_\\beta^\\delta+d_\\beta^\\gamma*d_\\alpha^\\delta)/2" + "-la/(4*(1+la))*(" + "d_\\alpha^\\gamma*d_\\beta^\\mu*g^\\delta\\nu" + "+d_\\alpha^\\gamma*d_\\beta^\\nu*g^\\delta\\mu" + "+d_\\alpha^\\delta*d_\\beta^\\mu*g^\\gamma\\nu" + "+d_\\alpha^\\delta*d_\\beta^\\nu*g^\\gamma\\mu" + "+d_\\beta^\\gamma*d_\\alpha^\\mu*g^\\delta\\nu" + "+d_\\beta^\\gamma*d_\\alpha^\\nu*g^\\delta\\mu" + "+d_\\beta^\\delta*d_\\alpha^\\mu*g^\\gamma\\nu" + "+d_\\beta^\\delta*d_\\alpha^\\nu*g^\\gamma\\mu)" + "+(la-be)/(2*(1+la))*(g^\\gamma\\delta*(d_\\alpha^\\mu*d_\\beta^\\nu+d_\\alpha^\\nu*d_\\beta^\\mu)+g_\\alpha\\beta*(g^\\gamma\\mu*g^\\delta\\nu+g^\\gamma\\nu*g^\\delta\\mu))" + "+g^\\mu\\nu*g_\\alpha\\beta*g^\\gamma\\delta*(-1+(1+be)**2/(2*(1+la)))"); K = (Expression) Tensors.parseExpression("be = ga/(1+ga)").transform(K); Expression S = Tensors.parseExpression("S^\\rho_{\\alpha\\beta}^{\\gamma\\delta}=0"); Expression W = Tensors.parseExpression("W_{\\alpha\\beta}^{\\gamma\\delta}=P_\\alpha\\beta^\\gamma\\delta" + "-la/(2*(1+la))*(R_\\alpha^\\gamma_\\beta^\\delta+R_\\alpha^\\delta_\\beta^\\gamma)" + "+la/(4*(1+la))*(" + "d_\\alpha^\\gamma*R_\\beta^\\delta" + "+d_\\alpha^\\delta*R_\\beta^\\gamma" + "+d_\\beta^\\gamma*R_\\alpha^\\delta" + "+d_\\beta^\\delta*R_\\alpha^\\gamma)"); Expression P = Tensors.parseExpression("P_\\alpha\\beta^\\mu\\nu =" + "1/4*(d_\\alpha^\\gamma*d_\\beta^\\delta+d_\\alpha^\\delta*d_\\beta^\\gamma-g_\\alpha\\beta*g^\\gamma\\delta)" + "*(R_\\gamma^\\mu_\\delta^\\nu+R_\\gamma^\\nu_\\delta^\\mu-g^\\mu\\nu*R_\\gamma\\delta-g_\\gamma\\delta*R^\\mu\\nu" + "+1/2*(d^\\mu_\\gamma*R^\\nu_\\delta+d^\\nu_\\gamma*R_\\delta^\\mu+d^\\mu_\\delta*R^\\nu_\\gamma+d^\\nu_\\delta*R^\\mu_\\gamma)" + "-1/2*(d^\\mu_\\gamma*d^\\nu_\\delta+d^\\nu_\\gamma*d^\\mu_\\delta)*(R-2*LA)+1/2*g_\\gamma\\delta*g^\\mu\\nu*R)"); P = (Expression) ExpandTransformation.expand(P, EliminateMetricsTransformation.ELIMINATE_METRICS, Tensors.parseExpression("R_{\\mu \\nu}^{\\mu}_{\\alpha} = R_{\\nu\\alpha}"), Tensors.parseExpression("R_{\\mu\\nu}^{\\alpha}_{\\alpha}=0"), Tensors.parseExpression("R_{\\mu}^{\\mu}= R")); W = (Expression) P.transform(W); Expression F = Tensors.parseExpression("F_\\mu\\nu^\\lambda\\delta_\\rho\\tau = " + "R^\\lambda_\\rho\\mu\\nu*d^\\delta_\\tau+R^\\delta_\\tau\\mu\\nu*d^\\lambda_\\rho"); OneLoopInput input = new OneLoopInput(2, KINV, K, S, W, null, null, F); OneLoopCounterterms action = OneLoopCounterterms.calculateOneLoopCounterterms(input); } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy