org.apache.spark.SparkContext.scala Maven / Gradle / Ivy
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark
import java.io._
import java.net.URI
import java.util.{Arrays, Locale, Properties, ServiceLoader, UUID}
import java.util.concurrent.{ConcurrentHashMap, ConcurrentMap}
import java.util.concurrent.atomic.{AtomicBoolean, AtomicInteger, AtomicReference}
import scala.collection.JavaConverters._
import scala.collection.Map
import scala.collection.mutable.HashMap
import scala.language.implicitConversions
import scala.reflect.{classTag, ClassTag}
import scala.util.control.NonFatal
import com.google.common.collect.MapMaker
import org.apache.hadoop.conf.Configuration
import org.apache.hadoop.fs.{FileSystem, Path}
import org.apache.hadoop.io.{ArrayWritable, BooleanWritable, BytesWritable, DoubleWritable, FloatWritable, IntWritable, LongWritable, NullWritable, Text, Writable}
import org.apache.hadoop.mapred.{FileInputFormat, InputFormat, JobConf, SequenceFileInputFormat, TextInputFormat}
import org.apache.hadoop.mapreduce.{InputFormat => NewInputFormat, Job => NewHadoopJob}
import org.apache.hadoop.mapreduce.lib.input.{FileInputFormat => NewFileInputFormat}
import org.apache.spark.annotation.DeveloperApi
import org.apache.spark.broadcast.Broadcast
import org.apache.spark.deploy.{LocalSparkCluster, SparkHadoopUtil}
import org.apache.spark.executor.{ExecutorMetrics, ExecutorMetricsSource}
import org.apache.spark.input.{FixedLengthBinaryInputFormat, PortableDataStream, StreamInputFormat, WholeTextFileInputFormat}
import org.apache.spark.internal.Logging
import org.apache.spark.internal.config._
import org.apache.spark.internal.config.Tests._
import org.apache.spark.internal.config.UI._
import org.apache.spark.internal.plugin.PluginContainer
import org.apache.spark.io.CompressionCodec
import org.apache.spark.metrics.source.JVMCPUSource
import org.apache.spark.partial.{ApproximateEvaluator, PartialResult}
import org.apache.spark.rdd._
import org.apache.spark.resource.{ResourceID, ResourceInformation}
import org.apache.spark.resource.ResourceUtils._
import org.apache.spark.rpc.RpcEndpointRef
import org.apache.spark.scheduler._
import org.apache.spark.scheduler.cluster.StandaloneSchedulerBackend
import org.apache.spark.scheduler.local.LocalSchedulerBackend
import org.apache.spark.shuffle.ShuffleDataIOUtils
import org.apache.spark.shuffle.api.ShuffleDriverComponents
import org.apache.spark.status.{AppStatusSource, AppStatusStore}
import org.apache.spark.status.api.v1.ThreadStackTrace
import org.apache.spark.storage._
import org.apache.spark.storage.BlockManagerMessages.TriggerThreadDump
import org.apache.spark.ui.{ConsoleProgressBar, SparkUI}
import org.apache.spark.util._
import org.apache.spark.util.logging.DriverLogger
/**
* Main entry point for Spark functionality. A SparkContext represents the connection to a Spark
* cluster, and can be used to create RDDs, accumulators and broadcast variables on that cluster.
*
* @note Only one `SparkContext` should be active per JVM. You must `stop()` the
* active `SparkContext` before creating a new one.
* @param config a Spark Config object describing the application configuration. Any settings in
* this config overrides the default configs as well as system properties.
*/
class SparkContext(config: SparkConf) extends Logging {
// The call site where this SparkContext was constructed.
private val creationSite: CallSite = Utils.getCallSite()
if (!config.get(EXECUTOR_ALLOW_SPARK_CONTEXT)) {
// In order to prevent SparkContext from being created in executors.
SparkContext.assertOnDriver()
}
// In order to prevent multiple SparkContexts from being active at the same time, mark this
// context as having started construction.
// NOTE: this must be placed at the beginning of the SparkContext constructor.
SparkContext.markPartiallyConstructed(this)
val startTime = System.currentTimeMillis()
private[spark] val stopped: AtomicBoolean = new AtomicBoolean(false)
private[spark] def assertNotStopped(): Unit = {
if (stopped.get()) {
val activeContext = SparkContext.activeContext.get()
val activeCreationSite =
if (activeContext == null) {
"(No active SparkContext.)"
} else {
activeContext.creationSite.longForm
}
throw new IllegalStateException(
s"""Cannot call methods on a stopped SparkContext.
|This stopped SparkContext was created at:
|
|${creationSite.longForm}
|
|The currently active SparkContext was created at:
|
|$activeCreationSite
""".stripMargin)
}
}
/**
* Create a SparkContext that loads settings from system properties (for instance, when
* launching with ./bin/spark-submit).
*/
def this() = this(new SparkConf())
/**
* Alternative constructor that allows setting common Spark properties directly
*
* @param master Cluster URL to connect to (e.g. mesos://host:port, spark://host:port, local[4]).
* @param appName A name for your application, to display on the cluster web UI
* @param conf a [[org.apache.spark.SparkConf]] object specifying other Spark parameters
*/
def this(master: String, appName: String, conf: SparkConf) =
this(SparkContext.updatedConf(conf, master, appName))
/**
* Alternative constructor that allows setting common Spark properties directly
*
* @param master Cluster URL to connect to (e.g. mesos://host:port, spark://host:port, local[4]).
* @param appName A name for your application, to display on the cluster web UI.
* @param sparkHome Location where Spark is installed on cluster nodes.
* @param jars Collection of JARs to send to the cluster. These can be paths on the local file
* system or HDFS, HTTP, HTTPS, or FTP URLs.
* @param environment Environment variables to set on worker nodes.
*/
def this(
master: String,
appName: String,
sparkHome: String = null,
jars: Seq[String] = Nil,
environment: Map[String, String] = Map()) = {
this(SparkContext.updatedConf(new SparkConf(), master, appName, sparkHome, jars, environment))
}
// The following constructors are required when Java code accesses SparkContext directly.
// Please see SI-4278
/**
* Alternative constructor that allows setting common Spark properties directly
*
* @param master Cluster URL to connect to (e.g. mesos://host:port, spark://host:port, local[4]).
* @param appName A name for your application, to display on the cluster web UI.
*/
private[spark] def this(master: String, appName: String) =
this(master, appName, null, Nil, Map())
/**
* Alternative constructor that allows setting common Spark properties directly
*
* @param master Cluster URL to connect to (e.g. mesos://host:port, spark://host:port, local[4]).
* @param appName A name for your application, to display on the cluster web UI.
* @param sparkHome Location where Spark is installed on cluster nodes.
*/
private[spark] def this(master: String, appName: String, sparkHome: String) =
this(master, appName, sparkHome, Nil, Map())
/**
* Alternative constructor that allows setting common Spark properties directly
*
* @param master Cluster URL to connect to (e.g. mesos://host:port, spark://host:port, local[4]).
* @param appName A name for your application, to display on the cluster web UI.
* @param sparkHome Location where Spark is installed on cluster nodes.
* @param jars Collection of JARs to send to the cluster. These can be paths on the local file
* system or HDFS, HTTP, HTTPS, or FTP URLs.
*/
private[spark] def this(master: String, appName: String, sparkHome: String, jars: Seq[String]) =
this(master, appName, sparkHome, jars, Map())
// log out Spark Version in Spark driver log
logInfo(s"Running Spark version $SPARK_VERSION")
/* ------------------------------------------------------------------------------------- *
| Private variables. These variables keep the internal state of the context, and are |
| not accessible by the outside world. They're mutable since we want to initialize all |
| of them to some neutral value ahead of time, so that calling "stop()" while the |
| constructor is still running is safe. |
* ------------------------------------------------------------------------------------- */
private var _conf: SparkConf = _
private var _eventLogDir: Option[URI] = None
private var _eventLogCodec: Option[String] = None
private var _listenerBus: LiveListenerBus = _
private var _env: SparkEnv = _
private var _statusTracker: SparkStatusTracker = _
private var _progressBar: Option[ConsoleProgressBar] = None
private var _ui: Option[SparkUI] = None
private var _hadoopConfiguration: Configuration = _
private var _executorMemory: Int = _
private var _schedulerBackend: SchedulerBackend = _
private var _taskScheduler: TaskScheduler = _
private var _heartbeatReceiver: RpcEndpointRef = _
@volatile private var _dagScheduler: DAGScheduler = _
private var _applicationId: String = _
private var _applicationAttemptId: Option[String] = None
private var _eventLogger: Option[EventLoggingListener] = None
private var _driverLogger: Option[DriverLogger] = None
private var _executorAllocationManager: Option[ExecutorAllocationManager] = None
private var _cleaner: Option[ContextCleaner] = None
private var _listenerBusStarted: Boolean = false
private var _jars: Seq[String] = _
private var _files: Seq[String] = _
private var _shutdownHookRef: AnyRef = _
private var _statusStore: AppStatusStore = _
private var _heartbeater: Heartbeater = _
private var _resources: scala.collection.immutable.Map[String, ResourceInformation] = _
private var _shuffleDriverComponents: ShuffleDriverComponents = _
private var _plugins: Option[PluginContainer] = None
/* ------------------------------------------------------------------------------------- *
| Accessors and public fields. These provide access to the internal state of the |
| context. |
* ------------------------------------------------------------------------------------- */
private[spark] def conf: SparkConf = _conf
/**
* Return a copy of this SparkContext's configuration. The configuration ''cannot'' be
* changed at runtime.
*/
def getConf: SparkConf = conf.clone()
def resources: Map[String, ResourceInformation] = _resources
def jars: Seq[String] = _jars
def files: Seq[String] = _files
def master: String = _conf.get("spark.master")
def deployMode: String = _conf.get(SUBMIT_DEPLOY_MODE)
def appName: String = _conf.get("spark.app.name")
private[spark] def isEventLogEnabled: Boolean = _conf.get(EVENT_LOG_ENABLED)
private[spark] def eventLogDir: Option[URI] = _eventLogDir
private[spark] def eventLogCodec: Option[String] = _eventLogCodec
def isLocal: Boolean = Utils.isLocalMaster(_conf)
/**
* @return true if context is stopped or in the midst of stopping.
*/
def isStopped: Boolean = stopped.get()
private[spark] def statusStore: AppStatusStore = _statusStore
// An asynchronous listener bus for Spark events
private[spark] def listenerBus: LiveListenerBus = _listenerBus
// This function allows components created by SparkEnv to be mocked in unit tests:
private[spark] def createSparkEnv(
conf: SparkConf,
isLocal: Boolean,
listenerBus: LiveListenerBus): SparkEnv = {
SparkEnv.createDriverEnv(conf, isLocal, listenerBus, SparkContext.numDriverCores(master, conf))
}
private[spark] def env: SparkEnv = _env
// Used to store a URL for each static file/jar together with the file's local timestamp
private[spark] val addedFiles = new ConcurrentHashMap[String, Long]().asScala
private[spark] val addedJars = new ConcurrentHashMap[String, Long]().asScala
// Keeps track of all persisted RDDs
private[spark] val persistentRdds = {
val map: ConcurrentMap[Int, RDD[_]] = new MapMaker().weakValues().makeMap[Int, RDD[_]]()
map.asScala
}
def statusTracker: SparkStatusTracker = _statusTracker
private[spark] def progressBar: Option[ConsoleProgressBar] = _progressBar
private[spark] def ui: Option[SparkUI] = _ui
def uiWebUrl: Option[String] = _ui.map(_.webUrl)
/**
* A default Hadoop Configuration for the Hadoop code (e.g. file systems) that we reuse.
*
* @note As it will be reused in all Hadoop RDDs, it's better not to modify it unless you
* plan to set some global configurations for all Hadoop RDDs.
*/
def hadoopConfiguration: Configuration = _hadoopConfiguration
private[spark] def executorMemory: Int = _executorMemory
// Environment variables to pass to our executors.
private[spark] val executorEnvs = HashMap[String, String]()
// Set SPARK_USER for user who is running SparkContext.
val sparkUser = Utils.getCurrentUserName()
private[spark] def schedulerBackend: SchedulerBackend = _schedulerBackend
private[spark] def taskScheduler: TaskScheduler = _taskScheduler
private[spark] def taskScheduler_=(ts: TaskScheduler): Unit = {
_taskScheduler = ts
}
private[spark] def dagScheduler: DAGScheduler = _dagScheduler
private[spark] def dagScheduler_=(ds: DAGScheduler): Unit = {
_dagScheduler = ds
}
private[spark] def shuffleDriverComponents: ShuffleDriverComponents = _shuffleDriverComponents
/**
* A unique identifier for the Spark application.
* Its format depends on the scheduler implementation.
* (i.e.
* in case of local spark app something like 'local-1433865536131'
* in case of YARN something like 'application_1433865536131_34483'
* in case of MESOS something like 'driver-20170926223339-0001'
* )
*/
def applicationId: String = _applicationId
def applicationAttemptId: Option[String] = _applicationAttemptId
private[spark] def eventLogger: Option[EventLoggingListener] = _eventLogger
private[spark] def executorAllocationManager: Option[ExecutorAllocationManager] =
_executorAllocationManager
private[spark] def cleaner: Option[ContextCleaner] = _cleaner
private[spark] var checkpointDir: Option[String] = None
// Thread Local variable that can be used by users to pass information down the stack
protected[spark] val localProperties = new InheritableThreadLocal[Properties] {
override protected def childValue(parent: Properties): Properties = {
// Note: make a clone such that changes in the parent properties aren't reflected in
// the those of the children threads, which has confusing semantics (SPARK-10563).
Utils.cloneProperties(parent)
}
override protected def initialValue(): Properties = new Properties()
}
/* ------------------------------------------------------------------------------------- *
| Initialization. This code initializes the context in a manner that is exception-safe. |
| All internal fields holding state are initialized here, and any error prompts the |
| stop() method to be called. |
* ------------------------------------------------------------------------------------- */
private def warnSparkMem(value: String): String = {
logWarning("Using SPARK_MEM to set amount of memory to use per executor process is " +
"deprecated, please use spark.executor.memory instead.")
value
}
/** Control our logLevel. This overrides any user-defined log settings.
* @param logLevel The desired log level as a string.
* Valid log levels include: ALL, DEBUG, ERROR, FATAL, INFO, OFF, TRACE, WARN
*/
def setLogLevel(logLevel: String): Unit = {
// let's allow lowercase or mixed case too
val upperCased = logLevel.toUpperCase(Locale.ROOT)
require(SparkContext.VALID_LOG_LEVELS.contains(upperCased),
s"Supplied level $logLevel did not match one of:" +
s" ${SparkContext.VALID_LOG_LEVELS.mkString(",")}")
Utils.setLogLevel(org.apache.log4j.Level.toLevel(upperCased))
}
try {
_conf = config.clone()
_conf.validateSettings()
if (!_conf.contains("spark.master")) {
throw new SparkException("A master URL must be set in your configuration")
}
if (!_conf.contains("spark.app.name")) {
throw new SparkException("An application name must be set in your configuration")
}
_driverLogger = DriverLogger(_conf)
val resourcesFileOpt = conf.get(DRIVER_RESOURCES_FILE)
_resources = getOrDiscoverAllResources(_conf, SPARK_DRIVER_PREFIX, resourcesFileOpt)
logResourceInfo(SPARK_DRIVER_PREFIX, _resources)
// log out spark.app.name in the Spark driver logs
logInfo(s"Submitted application: $appName")
// System property spark.yarn.app.id must be set if user code ran by AM on a YARN cluster
if (master == "yarn" && deployMode == "cluster" && !_conf.contains("spark.yarn.app.id")) {
throw new SparkException("Detected yarn cluster mode, but isn't running on a cluster. " +
"Deployment to YARN is not supported directly by SparkContext. Please use spark-submit.")
}
if (_conf.getBoolean("spark.logConf", false)) {
logInfo("Spark configuration:\n" + _conf.toDebugString)
}
// Set Spark driver host and port system properties. This explicitly sets the configuration
// instead of relying on the default value of the config constant.
_conf.set(DRIVER_HOST_ADDRESS, _conf.get(DRIVER_HOST_ADDRESS))
_conf.setIfMissing(DRIVER_PORT, 0)
_conf.set(EXECUTOR_ID, SparkContext.DRIVER_IDENTIFIER)
_jars = Utils.getUserJars(_conf)
_files = _conf.getOption(FILES.key).map(_.split(",")).map(_.filter(_.nonEmpty))
.toSeq.flatten
_eventLogDir =
if (isEventLogEnabled) {
val unresolvedDir = conf.get(EVENT_LOG_DIR).stripSuffix("/")
Some(Utils.resolveURI(unresolvedDir))
} else {
None
}
_eventLogCodec = {
val compress = _conf.get(EVENT_LOG_COMPRESS)
if (compress && isEventLogEnabled) {
Some(_conf.get(EVENT_LOG_COMPRESSION_CODEC)).map(CompressionCodec.getShortName)
} else {
None
}
}
_listenerBus = new LiveListenerBus(_conf)
// Initialize the app status store and listener before SparkEnv is created so that it gets
// all events.
val appStatusSource = AppStatusSource.createSource(conf)
_statusStore = AppStatusStore.createLiveStore(conf, appStatusSource)
listenerBus.addToStatusQueue(_statusStore.listener.get)
// Create the Spark execution environment (cache, map output tracker, etc)
_env = createSparkEnv(_conf, isLocal, listenerBus)
SparkEnv.set(_env)
// If running the REPL, register the repl's output dir with the file server.
_conf.getOption("spark.repl.class.outputDir").foreach { path =>
val replUri = _env.rpcEnv.fileServer.addDirectory("/classes", new File(path))
_conf.set("spark.repl.class.uri", replUri)
}
_statusTracker = new SparkStatusTracker(this, _statusStore)
_progressBar =
if (_conf.get(UI_SHOW_CONSOLE_PROGRESS)) {
Some(new ConsoleProgressBar(this))
} else {
None
}
_ui =
if (conf.get(UI_ENABLED)) {
Some(SparkUI.create(Some(this), _statusStore, _conf, _env.securityManager, appName, "",
startTime))
} else {
// For tests, do not enable the UI
None
}
// Bind the UI before starting the task scheduler to communicate
// the bound port to the cluster manager properly
_ui.foreach(_.bind())
_hadoopConfiguration = SparkHadoopUtil.get.newConfiguration(_conf)
// Performance optimization: this dummy call to .size() triggers eager evaluation of
// Configuration's internal `properties` field, guaranteeing that it will be computed and
// cached before SessionState.newHadoopConf() uses `sc.hadoopConfiguration` to create
// a new per-session Configuration. If `properties` has not been computed by that time
// then each newly-created Configuration will perform its own expensive IO and XML
// parsing to load configuration defaults and populate its own properties. By ensuring
// that we've pre-computed the parent's properties, the child Configuration will simply
// clone the parent's properties.
_hadoopConfiguration.size()
// Add each JAR given through the constructor
if (jars != null) {
jars.foreach(addJar)
}
if (files != null) {
files.foreach(addFile)
}
_executorMemory = _conf.getOption(EXECUTOR_MEMORY.key)
.orElse(Option(System.getenv("SPARK_EXECUTOR_MEMORY")))
.orElse(Option(System.getenv("SPARK_MEM"))
.map(warnSparkMem))
.map(Utils.memoryStringToMb)
.getOrElse(1024)
// Convert java options to env vars as a work around
// since we can't set env vars directly in sbt.
for { (envKey, propKey) <- Seq(("SPARK_TESTING", IS_TESTING.key))
value <- Option(System.getenv(envKey)).orElse(Option(System.getProperty(propKey)))} {
executorEnvs(envKey) = value
}
Option(System.getenv("SPARK_PREPEND_CLASSES")).foreach { v =>
executorEnvs("SPARK_PREPEND_CLASSES") = v
}
// The Mesos scheduler backend relies on this environment variable to set executor memory.
// TODO: Set this only in the Mesos scheduler.
executorEnvs("SPARK_EXECUTOR_MEMORY") = executorMemory + "m"
executorEnvs ++= _conf.getExecutorEnv
executorEnvs("SPARK_USER") = sparkUser
_shuffleDriverComponents = ShuffleDataIOUtils.loadShuffleDataIO(config).driver()
_shuffleDriverComponents.initializeApplication().asScala.foreach { case (k, v) =>
_conf.set(ShuffleDataIOUtils.SHUFFLE_SPARK_CONF_PREFIX + k, v)
}
// We need to register "HeartbeatReceiver" before "createTaskScheduler" because Executor will
// retrieve "HeartbeatReceiver" in the constructor. (SPARK-6640)
_heartbeatReceiver = env.rpcEnv.setupEndpoint(
HeartbeatReceiver.ENDPOINT_NAME, new HeartbeatReceiver(this))
// Initialize any plugins before the task scheduler is initialized.
_plugins = PluginContainer(this, _resources.asJava)
// Create and start the scheduler
val (sched, ts) = SparkContext.createTaskScheduler(this, master, deployMode)
_schedulerBackend = sched
_taskScheduler = ts
_dagScheduler = new DAGScheduler(this)
_heartbeatReceiver.ask[Boolean](TaskSchedulerIsSet)
val _executorMetricsSource =
if (_conf.get(METRICS_EXECUTORMETRICS_SOURCE_ENABLED)) {
Some(new ExecutorMetricsSource)
} else {
None
}
// create and start the heartbeater for collecting memory metrics
_heartbeater = new Heartbeater(
() => SparkContext.this.reportHeartBeat(_executorMetricsSource),
"driver-heartbeater",
conf.get(EXECUTOR_HEARTBEAT_INTERVAL))
_heartbeater.start()
// start TaskScheduler after taskScheduler sets DAGScheduler reference in DAGScheduler's
// constructor
_taskScheduler.start()
_applicationId = _taskScheduler.applicationId()
_applicationAttemptId = _taskScheduler.applicationAttemptId()
_conf.set("spark.app.id", _applicationId)
if (_conf.get(UI_REVERSE_PROXY)) {
System.setProperty("spark.ui.proxyBase", "/proxy/" + _applicationId)
}
_ui.foreach(_.setAppId(_applicationId))
_env.blockManager.initialize(_applicationId)
// The metrics system for Driver need to be set spark.app.id to app ID.
// So it should start after we get app ID from the task scheduler and set spark.app.id.
_env.metricsSystem.start(_conf.get(METRICS_STATIC_SOURCES_ENABLED))
// Attach the driver metrics servlet handler to the web ui after the metrics system is started.
_env.metricsSystem.getServletHandlers.foreach(handler => ui.foreach(_.attachHandler(handler)))
_eventLogger =
if (isEventLogEnabled) {
val logger =
new EventLoggingListener(_applicationId, _applicationAttemptId, _eventLogDir.get,
_conf, _hadoopConfiguration)
logger.start()
listenerBus.addToEventLogQueue(logger)
Some(logger)
} else {
None
}
_cleaner =
if (_conf.get(CLEANER_REFERENCE_TRACKING)) {
Some(new ContextCleaner(this, _shuffleDriverComponents))
} else {
None
}
_cleaner.foreach(_.start())
val dynamicAllocationEnabled = Utils.isDynamicAllocationEnabled(_conf)
_executorAllocationManager =
if (dynamicAllocationEnabled) {
schedulerBackend match {
case b: ExecutorAllocationClient =>
Some(new ExecutorAllocationManager(
schedulerBackend.asInstanceOf[ExecutorAllocationClient], listenerBus, _conf,
cleaner = cleaner))
case _ =>
None
}
} else {
None
}
_executorAllocationManager.foreach(_.start())
setupAndStartListenerBus()
postEnvironmentUpdate()
postApplicationStart()
// Post init
_taskScheduler.postStartHook()
_env.metricsSystem.registerSource(_dagScheduler.metricsSource)
_env.metricsSystem.registerSource(new BlockManagerSource(_env.blockManager))
_env.metricsSystem.registerSource(new JVMCPUSource())
_executorMetricsSource.foreach(_.register(_env.metricsSystem))
_executorAllocationManager.foreach { e =>
_env.metricsSystem.registerSource(e.executorAllocationManagerSource)
}
appStatusSource.foreach(_env.metricsSystem.registerSource(_))
_plugins.foreach(_.registerMetrics(applicationId))
// Make sure the context is stopped if the user forgets about it. This avoids leaving
// unfinished event logs around after the JVM exits cleanly. It doesn't help if the JVM
// is killed, though.
logDebug("Adding shutdown hook") // force eager creation of logger
_shutdownHookRef = ShutdownHookManager.addShutdownHook(
ShutdownHookManager.SPARK_CONTEXT_SHUTDOWN_PRIORITY) { () =>
logInfo("Invoking stop() from shutdown hook")
try {
stop()
} catch {
case e: Throwable =>
logWarning("Ignoring Exception while stopping SparkContext from shutdown hook", e)
}
}
} catch {
case NonFatal(e) =>
logError("Error initializing SparkContext.", e)
try {
stop()
} catch {
case NonFatal(inner) =>
logError("Error stopping SparkContext after init error.", inner)
} finally {
throw e
}
}
/**
* Called by the web UI to obtain executor thread dumps. This method may be expensive.
* Logs an error and returns None if we failed to obtain a thread dump, which could occur due
* to an executor being dead or unresponsive or due to network issues while sending the thread
* dump message back to the driver.
*/
private[spark] def getExecutorThreadDump(executorId: String): Option[Array[ThreadStackTrace]] = {
try {
if (executorId == SparkContext.DRIVER_IDENTIFIER) {
Some(Utils.getThreadDump())
} else {
val endpointRef = env.blockManager.master.getExecutorEndpointRef(executorId).get
Some(endpointRef.askSync[Array[ThreadStackTrace]](TriggerThreadDump))
}
} catch {
case e: Exception =>
logError(s"Exception getting thread dump from executor $executorId", e)
None
}
}
private[spark] def getLocalProperties: Properties = localProperties.get()
private[spark] def setLocalProperties(props: Properties): Unit = {
localProperties.set(props)
}
/**
* Set a local property that affects jobs submitted from this thread, such as the Spark fair
* scheduler pool. User-defined properties may also be set here. These properties are propagated
* through to worker tasks and can be accessed there via
* [[org.apache.spark.TaskContext#getLocalProperty]].
*
* These properties are inherited by child threads spawned from this thread. This
* may have unexpected consequences when working with thread pools. The standard java
* implementation of thread pools have worker threads spawn other worker threads.
* As a result, local properties may propagate unpredictably.
*/
def setLocalProperty(key: String, value: String): Unit = {
if (value == null) {
localProperties.get.remove(key)
} else {
localProperties.get.setProperty(key, value)
}
}
/**
* Get a local property set in this thread, or null if it is missing. See
* `org.apache.spark.SparkContext.setLocalProperty`.
*/
def getLocalProperty(key: String): String =
Option(localProperties.get).map(_.getProperty(key)).orNull
/** Set a human readable description of the current job. */
def setJobDescription(value: String): Unit = {
setLocalProperty(SparkContext.SPARK_JOB_DESCRIPTION, value)
}
/**
* Assigns a group ID to all the jobs started by this thread until the group ID is set to a
* different value or cleared.
*
* Often, a unit of execution in an application consists of multiple Spark actions or jobs.
* Application programmers can use this method to group all those jobs together and give a
* group description. Once set, the Spark web UI will associate such jobs with this group.
*
* The application can also use `org.apache.spark.SparkContext.cancelJobGroup` to cancel all
* running jobs in this group. For example,
* {{{
* // In the main thread:
* sc.setJobGroup("some_job_to_cancel", "some job description")
* sc.parallelize(1 to 10000, 2).map { i => Thread.sleep(10); i }.count()
*
* // In a separate thread:
* sc.cancelJobGroup("some_job_to_cancel")
* }}}
*
* @param interruptOnCancel If true, then job cancellation will result in `Thread.interrupt()`
* being called on the job's executor threads. This is useful to help ensure that the tasks
* are actually stopped in a timely manner, but is off by default due to HDFS-1208, where HDFS
* may respond to Thread.interrupt() by marking nodes as dead.
*/
def setJobGroup(groupId: String,
description: String, interruptOnCancel: Boolean = false): Unit = {
setLocalProperty(SparkContext.SPARK_JOB_DESCRIPTION, description)
setLocalProperty(SparkContext.SPARK_JOB_GROUP_ID, groupId)
// Note: Specifying interruptOnCancel in setJobGroup (rather than cancelJobGroup) avoids
// changing several public APIs and allows Spark cancellations outside of the cancelJobGroup
// APIs to also take advantage of this property (e.g., internal job failures or canceling from
// JobProgressTab UI) on a per-job basis.
setLocalProperty(SparkContext.SPARK_JOB_INTERRUPT_ON_CANCEL, interruptOnCancel.toString)
}
/** Clear the current thread's job group ID and its description. */
def clearJobGroup(): Unit = {
setLocalProperty(SparkContext.SPARK_JOB_DESCRIPTION, null)
setLocalProperty(SparkContext.SPARK_JOB_GROUP_ID, null)
setLocalProperty(SparkContext.SPARK_JOB_INTERRUPT_ON_CANCEL, null)
}
/**
* Execute a block of code in a scope such that all new RDDs created in this body will
* be part of the same scope. For more detail, see {{org.apache.spark.rdd.RDDOperationScope}}.
*
* @note Return statements are NOT allowed in the given body.
*/
private[spark] def withScope[U](body: => U): U = RDDOperationScope.withScope[U](this)(body)
// Methods for creating RDDs
/** Distribute a local Scala collection to form an RDD.
*
* @note Parallelize acts lazily. If `seq` is a mutable collection and is altered after the call
* to parallelize and before the first action on the RDD, the resultant RDD will reflect the
* modified collection. Pass a copy of the argument to avoid this.
* @note avoid using `parallelize(Seq())` to create an empty `RDD`. Consider `emptyRDD` for an
* RDD with no partitions, or `parallelize(Seq[T]())` for an RDD of `T` with empty partitions.
* @param seq Scala collection to distribute
* @param numSlices number of partitions to divide the collection into
* @return RDD representing distributed collection
*/
def parallelize[T: ClassTag](
seq: Seq[T],
numSlices: Int = defaultParallelism): RDD[T] = withScope {
assertNotStopped()
new ParallelCollectionRDD[T](this, seq, numSlices, Map[Int, Seq[String]]())
}
/**
* Creates a new RDD[Long] containing elements from `start` to `end`(exclusive), increased by
* `step` every element.
*
* @note if we need to cache this RDD, we should make sure each partition does not exceed limit.
*
* @param start the start value.
* @param end the end value.
* @param step the incremental step
* @param numSlices number of partitions to divide the collection into
* @return RDD representing distributed range
*/
def range(
start: Long,
end: Long,
step: Long = 1,
numSlices: Int = defaultParallelism): RDD[Long] = withScope {
assertNotStopped()
// when step is 0, range will run infinitely
require(step != 0, "step cannot be 0")
val numElements: BigInt = {
val safeStart = BigInt(start)
val safeEnd = BigInt(end)
if ((safeEnd - safeStart) % step == 0 || (safeEnd > safeStart) != (step > 0)) {
(safeEnd - safeStart) / step
} else {
// the remainder has the same sign with range, could add 1 more
(safeEnd - safeStart) / step + 1
}
}
parallelize(0 until numSlices, numSlices).mapPartitionsWithIndex { (i, _) =>
val partitionStart = (i * numElements) / numSlices * step + start
val partitionEnd = (((i + 1) * numElements) / numSlices) * step + start
def getSafeMargin(bi: BigInt): Long =
if (bi.isValidLong) {
bi.toLong
} else if (bi > 0) {
Long.MaxValue
} else {
Long.MinValue
}
val safePartitionStart = getSafeMargin(partitionStart)
val safePartitionEnd = getSafeMargin(partitionEnd)
new Iterator[Long] {
private[this] var number: Long = safePartitionStart
private[this] var overflow: Boolean = false
override def hasNext =
if (!overflow) {
if (step > 0) {
number < safePartitionEnd
} else {
number > safePartitionEnd
}
} else false
override def next() = {
val ret = number
number += step
if (number < ret ^ step < 0) {
// we have Long.MaxValue + Long.MaxValue < Long.MaxValue
// and Long.MinValue + Long.MinValue > Long.MinValue, so iff the step causes a step
// back, we are pretty sure that we have an overflow.
overflow = true
}
ret
}
}
}
}
/** Distribute a local Scala collection to form an RDD.
*
* This method is identical to `parallelize`.
* @param seq Scala collection to distribute
* @param numSlices number of partitions to divide the collection into
* @return RDD representing distributed collection
*/
def makeRDD[T: ClassTag](
seq: Seq[T],
numSlices: Int = defaultParallelism): RDD[T] = withScope {
parallelize(seq, numSlices)
}
/**
* Distribute a local Scala collection to form an RDD, with one or more
* location preferences (hostnames of Spark nodes) for each object.
* Create a new partition for each collection item.
* @param seq list of tuples of data and location preferences (hostnames of Spark nodes)
* @return RDD representing data partitioned according to location preferences
*/
def makeRDD[T: ClassTag](seq: Seq[(T, Seq[String])]): RDD[T] = withScope {
assertNotStopped()
val indexToPrefs = seq.zipWithIndex.map(t => (t._2, t._1._2)).toMap
new ParallelCollectionRDD[T](this, seq.map(_._1), math.max(seq.size, 1), indexToPrefs)
}
/**
* Read a text file from HDFS, a local file system (available on all nodes), or any
* Hadoop-supported file system URI, and return it as an RDD of Strings.
* The text files must be encoded as UTF-8.
*
* @param path path to the text file on a supported file system
* @param minPartitions suggested minimum number of partitions for the resulting RDD
* @return RDD of lines of the text file
*/
def textFile(
path: String,
minPartitions: Int = defaultMinPartitions): RDD[String] = withScope {
assertNotStopped()
hadoopFile(path, classOf[TextInputFormat], classOf[LongWritable], classOf[Text],
minPartitions).map(pair => pair._2.toString).setName(path)
}
/**
* Read a directory of text files from HDFS, a local file system (available on all nodes), or any
* Hadoop-supported file system URI. Each file is read as a single record and returned in a
* key-value pair, where the key is the path of each file, the value is the content of each file.
* The text files must be encoded as UTF-8.
*
* For example, if you have the following files:
* {{{
* hdfs://a-hdfs-path/part-00000
* hdfs://a-hdfs-path/part-00001
* ...
* hdfs://a-hdfs-path/part-nnnnn
* }}}
*
* Do `val rdd = sparkContext.wholeTextFile("hdfs://a-hdfs-path")`,
*
*
then `rdd` contains
* {{{
* (a-hdfs-path/part-00000, its content)
* (a-hdfs-path/part-00001, its content)
* ...
* (a-hdfs-path/part-nnnnn, its content)
* }}}
*
* @note Small files are preferred, large file is also allowable, but may cause bad performance.
* @note On some filesystems, `.../path/*` can be a more efficient way to read all files
* in a directory rather than `.../path/` or `.../path`
* @note Partitioning is determined by data locality. This may result in too few partitions
* by default.
*
* @param path Directory to the input data files, the path can be comma separated paths as the
* list of inputs.
* @param minPartitions A suggestion value of the minimal splitting number for input data.
* @return RDD representing tuples of file path and the corresponding file content
*/
def wholeTextFiles(
path: String,
minPartitions: Int = defaultMinPartitions): RDD[(String, String)] = withScope {
assertNotStopped()
val job = NewHadoopJob.getInstance(hadoopConfiguration)
// Use setInputPaths so that wholeTextFiles aligns with hadoopFile/textFile in taking
// comma separated files as input. (see SPARK-7155)
NewFileInputFormat.setInputPaths(job, path)
val updateConf = job.getConfiguration
new WholeTextFileRDD(
this,
classOf[WholeTextFileInputFormat],
classOf[Text],
classOf[Text],
updateConf,
minPartitions).map(record => (record._1.toString, record._2.toString)).setName(path)
}
/**
* Get an RDD for a Hadoop-readable dataset as PortableDataStream for each file
* (useful for binary data)
*
* For example, if you have the following files:
* {{{
* hdfs://a-hdfs-path/part-00000
* hdfs://a-hdfs-path/part-00001
* ...
* hdfs://a-hdfs-path/part-nnnnn
* }}}
*
* Do
* `val rdd = sparkContext.binaryFiles("hdfs://a-hdfs-path")`,
*
* then `rdd` contains
* {{{
* (a-hdfs-path/part-00000, its content)
* (a-hdfs-path/part-00001, its content)
* ...
* (a-hdfs-path/part-nnnnn, its content)
* }}}
*
* @note Small files are preferred; very large files may cause bad performance.
* @note On some filesystems, `.../path/*` can be a more efficient way to read all files
* in a directory rather than `.../path/` or `.../path`
* @note Partitioning is determined by data locality. This may result in too few partitions
* by default.
*
* @param path Directory to the input data files, the path can be comma separated paths as the
* list of inputs.
* @param minPartitions A suggestion value of the minimal splitting number for input data.
* @return RDD representing tuples of file path and corresponding file content
*/
def binaryFiles(
path: String,
minPartitions: Int = defaultMinPartitions): RDD[(String, PortableDataStream)] = withScope {
assertNotStopped()
val job = NewHadoopJob.getInstance(hadoopConfiguration)
// Use setInputPaths so that binaryFiles aligns with hadoopFile/textFile in taking
// comma separated files as input. (see SPARK-7155)
NewFileInputFormat.setInputPaths(job, path)
val updateConf = job.getConfiguration
new BinaryFileRDD(
this,
classOf[StreamInputFormat],
classOf[String],
classOf[PortableDataStream],
updateConf,
minPartitions).setName(path)
}
/**
* Load data from a flat binary file, assuming the length of each record is constant.
*
* @note We ensure that the byte array for each record in the resulting RDD
* has the provided record length.
*
* @param path Directory to the input data files, the path can be comma separated paths as the
* list of inputs.
* @param recordLength The length at which to split the records
* @param conf Configuration for setting up the dataset.
*
* @return An RDD of data with values, represented as byte arrays
*/
def binaryRecords(
path: String,
recordLength: Int,
conf: Configuration = hadoopConfiguration): RDD[Array[Byte]] = withScope {
assertNotStopped()
conf.setInt(FixedLengthBinaryInputFormat.RECORD_LENGTH_PROPERTY, recordLength)
val br = newAPIHadoopFile[LongWritable, BytesWritable, FixedLengthBinaryInputFormat](path,
classOf[FixedLengthBinaryInputFormat],
classOf[LongWritable],
classOf[BytesWritable],
conf = conf)
br.map { case (k, v) =>
val bytes = v.copyBytes()
assert(bytes.length == recordLength, "Byte array does not have correct length")
bytes
}
}
/**
* Get an RDD for a Hadoop-readable dataset from a Hadoop JobConf given its InputFormat and other
* necessary info (e.g. file name for a filesystem-based dataset, table name for HyperTable),
* using the older MapReduce API (`org.apache.hadoop.mapred`).
*
* @param conf JobConf for setting up the dataset. Note: This will be put into a Broadcast.
* Therefore if you plan to reuse this conf to create multiple RDDs, you need to make
* sure you won't modify the conf. A safe approach is always creating a new conf for
* a new RDD.
* @param inputFormatClass storage format of the data to be read
* @param keyClass `Class` of the key associated with the `inputFormatClass` parameter
* @param valueClass `Class` of the value associated with the `inputFormatClass` parameter
* @param minPartitions Minimum number of Hadoop Splits to generate.
* @return RDD of tuples of key and corresponding value
*
* @note Because Hadoop's RecordReader class re-uses the same Writable object for each
* record, directly caching the returned RDD or directly passing it to an aggregation or shuffle
* operation will create many references to the same object.
* If you plan to directly cache, sort, or aggregate Hadoop writable objects, you should first
* copy them using a `map` function.
*/
def hadoopRDD[K, V](
conf: JobConf,
inputFormatClass: Class[_ <: InputFormat[K, V]],
keyClass: Class[K],
valueClass: Class[V],
minPartitions: Int = defaultMinPartitions): RDD[(K, V)] = withScope {
assertNotStopped()
// This is a hack to enforce loading hdfs-site.xml.
// See SPARK-11227 for details.
FileSystem.getLocal(conf)
// Add necessary security credentials to the JobConf before broadcasting it.
SparkHadoopUtil.get.addCredentials(conf)
new HadoopRDD(this, conf, inputFormatClass, keyClass, valueClass, minPartitions)
}
/** Get an RDD for a Hadoop file with an arbitrary InputFormat
*
* @note Because Hadoop's RecordReader class re-uses the same Writable object for each
* record, directly caching the returned RDD or directly passing it to an aggregation or shuffle
* operation will create many references to the same object.
* If you plan to directly cache, sort, or aggregate Hadoop writable objects, you should first
* copy them using a `map` function.
* @param path directory to the input data files, the path can be comma separated paths
* as a list of inputs
* @param inputFormatClass storage format of the data to be read
* @param keyClass `Class` of the key associated with the `inputFormatClass` parameter
* @param valueClass `Class` of the value associated with the `inputFormatClass` parameter
* @param minPartitions suggested minimum number of partitions for the resulting RDD
* @return RDD of tuples of key and corresponding value
*/
def hadoopFile[K, V](
path: String,
inputFormatClass: Class[_ <: InputFormat[K, V]],
keyClass: Class[K],
valueClass: Class[V],
minPartitions: Int = defaultMinPartitions): RDD[(K, V)] = withScope {
assertNotStopped()
// This is a hack to enforce loading hdfs-site.xml.
// See SPARK-11227 for details.
FileSystem.getLocal(hadoopConfiguration)
// A Hadoop configuration can be about 10 KiB, which is pretty big, so broadcast it.
val confBroadcast = broadcast(new SerializableConfiguration(hadoopConfiguration))
val setInputPathsFunc = (jobConf: JobConf) => FileInputFormat.setInputPaths(jobConf, path)
new HadoopRDD(
this,
confBroadcast,
Some(setInputPathsFunc),
inputFormatClass,
keyClass,
valueClass,
minPartitions).setName(path)
}
/**
* Smarter version of hadoopFile() that uses class tags to figure out the classes of keys,
* values and the InputFormat so that users don't need to pass them directly. Instead, callers
* can just write, for example,
* {{{
* val file = sparkContext.hadoopFile[LongWritable, Text, TextInputFormat](path, minPartitions)
* }}}
*
* @note Because Hadoop's RecordReader class re-uses the same Writable object for each
* record, directly caching the returned RDD or directly passing it to an aggregation or shuffle
* operation will create many references to the same object.
* If you plan to directly cache, sort, or aggregate Hadoop writable objects, you should first
* copy them using a `map` function.
* @param path directory to the input data files, the path can be comma separated paths
* as a list of inputs
* @param minPartitions suggested minimum number of partitions for the resulting RDD
* @return RDD of tuples of key and corresponding value
*/
def hadoopFile[K, V, F <: InputFormat[K, V]]
(path: String, minPartitions: Int)
(implicit km: ClassTag[K], vm: ClassTag[V], fm: ClassTag[F]): RDD[(K, V)] = withScope {
hadoopFile(path,
fm.runtimeClass.asInstanceOf[Class[F]],
km.runtimeClass.asInstanceOf[Class[K]],
vm.runtimeClass.asInstanceOf[Class[V]],
minPartitions)
}
/**
* Smarter version of hadoopFile() that uses class tags to figure out the classes of keys,
* values and the InputFormat so that users don't need to pass them directly. Instead, callers
* can just write, for example,
* {{{
* val file = sparkContext.hadoopFile[LongWritable, Text, TextInputFormat](path)
* }}}
*
* @note Because Hadoop's RecordReader class re-uses the same Writable object for each
* record, directly caching the returned RDD or directly passing it to an aggregation or shuffle
* operation will create many references to the same object.
* If you plan to directly cache, sort, or aggregate Hadoop writable objects, you should first
* copy them using a `map` function.
* @param path directory to the input data files, the path can be comma separated paths as
* a list of inputs
* @return RDD of tuples of key and corresponding value
*/
def hadoopFile[K, V, F <: InputFormat[K, V]](path: String)
(implicit km: ClassTag[K], vm: ClassTag[V], fm: ClassTag[F]): RDD[(K, V)] = withScope {
hadoopFile[K, V, F](path, defaultMinPartitions)
}
/**
* Smarter version of `newApiHadoopFile` that uses class tags to figure out the classes of keys,
* values and the `org.apache.hadoop.mapreduce.InputFormat` (new MapReduce API) so that user
* don't need to pass them directly. Instead, callers can just write, for example:
* ```
* val file = sparkContext.hadoopFile[LongWritable, Text, TextInputFormat](path)
* ```
*
* @note Because Hadoop's RecordReader class re-uses the same Writable object for each
* record, directly caching the returned RDD or directly passing it to an aggregation or shuffle
* operation will create many references to the same object.
* If you plan to directly cache, sort, or aggregate Hadoop writable objects, you should first
* copy them using a `map` function.
* @param path directory to the input data files, the path can be comma separated paths
* as a list of inputs
* @return RDD of tuples of key and corresponding value
*/
def newAPIHadoopFile[K, V, F <: NewInputFormat[K, V]]
(path: String)
(implicit km: ClassTag[K], vm: ClassTag[V], fm: ClassTag[F]): RDD[(K, V)] = withScope {
newAPIHadoopFile(
path,
fm.runtimeClass.asInstanceOf[Class[F]],
km.runtimeClass.asInstanceOf[Class[K]],
vm.runtimeClass.asInstanceOf[Class[V]])
}
/**
* Get an RDD for a given Hadoop file with an arbitrary new API InputFormat
* and extra configuration options to pass to the input format.
*
* @note Because Hadoop's RecordReader class re-uses the same Writable object for each
* record, directly caching the returned RDD or directly passing it to an aggregation or shuffle
* operation will create many references to the same object.
* If you plan to directly cache, sort, or aggregate Hadoop writable objects, you should first
* copy them using a `map` function.
* @param path directory to the input data files, the path can be comma separated paths
* as a list of inputs
* @param fClass storage format of the data to be read
* @param kClass `Class` of the key associated with the `fClass` parameter
* @param vClass `Class` of the value associated with the `fClass` parameter
* @param conf Hadoop configuration
* @return RDD of tuples of key and corresponding value
*/
def newAPIHadoopFile[K, V, F <: NewInputFormat[K, V]](
path: String,
fClass: Class[F],
kClass: Class[K],
vClass: Class[V],
conf: Configuration = hadoopConfiguration): RDD[(K, V)] = withScope {
assertNotStopped()
// This is a hack to enforce loading hdfs-site.xml.
// See SPARK-11227 for details.
FileSystem.getLocal(hadoopConfiguration)
// The call to NewHadoopJob automatically adds security credentials to conf,
// so we don't need to explicitly add them ourselves
val job = NewHadoopJob.getInstance(conf)
// Use setInputPaths so that newAPIHadoopFile aligns with hadoopFile/textFile in taking
// comma separated files as input. (see SPARK-7155)
NewFileInputFormat.setInputPaths(job, path)
val updatedConf = job.getConfiguration
new NewHadoopRDD(this, fClass, kClass, vClass, updatedConf).setName(path)
}
/**
* Get an RDD for a given Hadoop file with an arbitrary new API InputFormat
* and extra configuration options to pass to the input format.
*
* @param conf Configuration for setting up the dataset. Note: This will be put into a Broadcast.
* Therefore if you plan to reuse this conf to create multiple RDDs, you need to make
* sure you won't modify the conf. A safe approach is always creating a new conf for
* a new RDD.
* @param fClass storage format of the data to be read
* @param kClass `Class` of the key associated with the `fClass` parameter
* @param vClass `Class` of the value associated with the `fClass` parameter
*
* @note Because Hadoop's RecordReader class re-uses the same Writable object for each
* record, directly caching the returned RDD or directly passing it to an aggregation or shuffle
* operation will create many references to the same object.
* If you plan to directly cache, sort, or aggregate Hadoop writable objects, you should first
* copy them using a `map` function.
*/
def newAPIHadoopRDD[K, V, F <: NewInputFormat[K, V]](
conf: Configuration = hadoopConfiguration,
fClass: Class[F],
kClass: Class[K],
vClass: Class[V]): RDD[(K, V)] = withScope {
assertNotStopped()
// This is a hack to enforce loading hdfs-site.xml.
// See SPARK-11227 for details.
FileSystem.getLocal(conf)
// Add necessary security credentials to the JobConf. Required to access secure HDFS.
val jconf = new JobConf(conf)
SparkHadoopUtil.get.addCredentials(jconf)
new NewHadoopRDD(this, fClass, kClass, vClass, jconf)
}
/**
* Get an RDD for a Hadoop SequenceFile with given key and value types.
*
* @note Because Hadoop's RecordReader class re-uses the same Writable object for each
* record, directly caching the returned RDD or directly passing it to an aggregation or shuffle
* operation will create many references to the same object.
* If you plan to directly cache, sort, or aggregate Hadoop writable objects, you should first
* copy them using a `map` function.
* @param path directory to the input data files, the path can be comma separated paths
* as a list of inputs
* @param keyClass `Class` of the key associated with `SequenceFileInputFormat`
* @param valueClass `Class` of the value associated with `SequenceFileInputFormat`
* @param minPartitions suggested minimum number of partitions for the resulting RDD
* @return RDD of tuples of key and corresponding value
*/
def sequenceFile[K, V](path: String,
keyClass: Class[K],
valueClass: Class[V],
minPartitions: Int
): RDD[(K, V)] = withScope {
assertNotStopped()
val inputFormatClass = classOf[SequenceFileInputFormat[K, V]]
hadoopFile(path, inputFormatClass, keyClass, valueClass, minPartitions)
}
/**
* Get an RDD for a Hadoop SequenceFile with given key and value types.
*
* @note Because Hadoop's RecordReader class re-uses the same Writable object for each
* record, directly caching the returned RDD or directly passing it to an aggregation or shuffle
* operation will create many references to the same object.
* If you plan to directly cache, sort, or aggregate Hadoop writable objects, you should first
* copy them using a `map` function.
* @param path directory to the input data files, the path can be comma separated paths
* as a list of inputs
* @param keyClass `Class` of the key associated with `SequenceFileInputFormat`
* @param valueClass `Class` of the value associated with `SequenceFileInputFormat`
* @return RDD of tuples of key and corresponding value
*/
def sequenceFile[K, V](
path: String,
keyClass: Class[K],
valueClass: Class[V]): RDD[(K, V)] = withScope {
assertNotStopped()
sequenceFile(path, keyClass, valueClass, defaultMinPartitions)
}
/**
* Version of sequenceFile() for types implicitly convertible to Writables through a
* WritableConverter. For example, to access a SequenceFile where the keys are Text and the
* values are IntWritable, you could simply write
* {{{
* sparkContext.sequenceFile[String, Int](path, ...)
* }}}
*
* WritableConverters are provided in a somewhat strange way (by an implicit function) to support
* both subclasses of Writable and types for which we define a converter (e.g. Int to
* IntWritable). The most natural thing would've been to have implicit objects for the
* converters, but then we couldn't have an object for every subclass of Writable (you can't
* have a parameterized singleton object). We use functions instead to create a new converter
* for the appropriate type. In addition, we pass the converter a ClassTag of its type to
* allow it to figure out the Writable class to use in the subclass case.
*
* @note Because Hadoop's RecordReader class re-uses the same Writable object for each
* record, directly caching the returned RDD or directly passing it to an aggregation or shuffle
* operation will create many references to the same object.
* If you plan to directly cache, sort, or aggregate Hadoop writable objects, you should first
* copy them using a `map` function.
* @param path directory to the input data files, the path can be comma separated paths
* as a list of inputs
* @param minPartitions suggested minimum number of partitions for the resulting RDD
* @return RDD of tuples of key and corresponding value
*/
def sequenceFile[K, V]
(path: String, minPartitions: Int = defaultMinPartitions)
(implicit km: ClassTag[K], vm: ClassTag[V],
kcf: () => WritableConverter[K], vcf: () => WritableConverter[V]): RDD[(K, V)] = {
withScope {
assertNotStopped()
val kc = clean(kcf)()
val vc = clean(vcf)()
val format = classOf[SequenceFileInputFormat[Writable, Writable]]
val writables = hadoopFile(path, format,
kc.writableClass(km).asInstanceOf[Class[Writable]],
vc.writableClass(vm).asInstanceOf[Class[Writable]], minPartitions)
writables.map { case (k, v) => (kc.convert(k), vc.convert(v)) }
}
}
/**
* Load an RDD saved as a SequenceFile containing serialized objects, with NullWritable keys and
* BytesWritable values that contain a serialized partition. This is still an experimental
* storage format and may not be supported exactly as is in future Spark releases. It will also
* be pretty slow if you use the default serializer (Java serialization),
* though the nice thing about it is that there's very little effort required to save arbitrary
* objects.
*
* @param path directory to the input data files, the path can be comma separated paths
* as a list of inputs
* @param minPartitions suggested minimum number of partitions for the resulting RDD
* @return RDD representing deserialized data from the file(s)
*/
def objectFile[T: ClassTag](
path: String,
minPartitions: Int = defaultMinPartitions): RDD[T] = withScope {
assertNotStopped()
sequenceFile(path, classOf[NullWritable], classOf[BytesWritable], minPartitions)
.flatMap(x => Utils.deserialize[Array[T]](x._2.getBytes, Utils.getContextOrSparkClassLoader))
}
protected[spark] def checkpointFile[T: ClassTag](path: String): RDD[T] = withScope {
new ReliableCheckpointRDD[T](this, path)
}
/** Build the union of a list of RDDs. */
def union[T: ClassTag](rdds: Seq[RDD[T]]): RDD[T] = withScope {
val nonEmptyRdds = rdds.filter(!_.partitions.isEmpty)
val partitioners = nonEmptyRdds.flatMap(_.partitioner).toSet
if (nonEmptyRdds.forall(_.partitioner.isDefined) && partitioners.size == 1) {
new PartitionerAwareUnionRDD(this, nonEmptyRdds)
} else {
new UnionRDD(this, nonEmptyRdds)
}
}
/** Build the union of a list of RDDs passed as variable-length arguments. */
def union[T: ClassTag](first: RDD[T], rest: RDD[T]*): RDD[T] = withScope {
union(Seq(first) ++ rest)
}
/** Get an RDD that has no partitions or elements. */
def emptyRDD[T: ClassTag]: RDD[T] = new EmptyRDD[T](this)
// Methods for creating shared variables
/**
* Register the given accumulator.
*
* @note Accumulators must be registered before use, or it will throw exception.
*/
def register(acc: AccumulatorV2[_, _]): Unit = {
acc.register(this)
}
/**
* Register the given accumulator with given name.
*
* @note Accumulators must be registered before use, or it will throw exception.
*/
def register(acc: AccumulatorV2[_, _], name: String): Unit = {
acc.register(this, name = Option(name))
}
/**
* Create and register a long accumulator, which starts with 0 and accumulates inputs by `add`.
*/
def longAccumulator: LongAccumulator = {
val acc = new LongAccumulator
register(acc)
acc
}
/**
* Create and register a long accumulator, which starts with 0 and accumulates inputs by `add`.
*/
def longAccumulator(name: String): LongAccumulator = {
val acc = new LongAccumulator
register(acc, name)
acc
}
/**
* Create and register a double accumulator, which starts with 0 and accumulates inputs by `add`.
*/
def doubleAccumulator: DoubleAccumulator = {
val acc = new DoubleAccumulator
register(acc)
acc
}
/**
* Create and register a double accumulator, which starts with 0 and accumulates inputs by `add`.
*/
def doubleAccumulator(name: String): DoubleAccumulator = {
val acc = new DoubleAccumulator
register(acc, name)
acc
}
/**
* Create and register a `CollectionAccumulator`, which starts with empty list and accumulates
* inputs by adding them into the list.
*/
def collectionAccumulator[T]: CollectionAccumulator[T] = {
val acc = new CollectionAccumulator[T]
register(acc)
acc
}
/**
* Create and register a `CollectionAccumulator`, which starts with empty list and accumulates
* inputs by adding them into the list.
*/
def collectionAccumulator[T](name: String): CollectionAccumulator[T] = {
val acc = new CollectionAccumulator[T]
register(acc, name)
acc
}
/**
* Broadcast a read-only variable to the cluster, returning a
* [[org.apache.spark.broadcast.Broadcast]] object for reading it in distributed functions.
* The variable will be sent to each cluster only once.
*
* @param value value to broadcast to the Spark nodes
* @return `Broadcast` object, a read-only variable cached on each machine
*/
def broadcast[T: ClassTag](value: T): Broadcast[T] = {
assertNotStopped()
require(!classOf[RDD[_]].isAssignableFrom(classTag[T].runtimeClass),
"Can not directly broadcast RDDs; instead, call collect() and broadcast the result.")
val bc = env.broadcastManager.newBroadcast[T](value, isLocal)
val callSite = getCallSite
logInfo("Created broadcast " + bc.id + " from " + callSite.shortForm)
cleaner.foreach(_.registerBroadcastForCleanup(bc))
bc
}
/**
* Add a file to be downloaded with this Spark job on every node.
*
* If a file is added during execution, it will not be available until the next TaskSet starts.
*
* @param path can be either a local file, a file in HDFS (or other Hadoop-supported
* filesystems), or an HTTP, HTTPS or FTP URI. To access the file in Spark jobs,
* use `SparkFiles.get(fileName)` to find its download location.
*
* @note A path can be added only once. Subsequent additions of the same path are ignored.
*/
def addFile(path: String): Unit = {
addFile(path, false)
}
/**
* Returns a list of file paths that are added to resources.
*/
def listFiles(): Seq[String] = addedFiles.keySet.toSeq
/**
* Add a file to be downloaded with this Spark job on every node.
*
* If a file is added during execution, it will not be available until the next TaskSet starts.
*
* @param path can be either a local file, a file in HDFS (or other Hadoop-supported
* filesystems), or an HTTP, HTTPS or FTP URI. To access the file in Spark jobs,
* use `SparkFiles.get(fileName)` to find its download location.
* @param recursive if true, a directory can be given in `path`. Currently directories are
* only supported for Hadoop-supported filesystems.
*
* @note A path can be added only once. Subsequent additions of the same path are ignored.
*/
def addFile(path: String, recursive: Boolean): Unit = {
val uri = new Path(path).toUri
val schemeCorrectedURI = uri.getScheme match {
case null => new File(path).getCanonicalFile.toURI
case "local" =>
logWarning("File with 'local' scheme is not supported to add to file server, since " +
"it is already available on every node.")
return
case _ => uri
}
val hadoopPath = new Path(schemeCorrectedURI)
val scheme = schemeCorrectedURI.getScheme
if (!Array("http", "https", "ftp").contains(scheme)) {
val fs = hadoopPath.getFileSystem(hadoopConfiguration)
val isDir = fs.getFileStatus(hadoopPath).isDirectory
if (!isLocal && scheme == "file" && isDir) {
throw new SparkException(s"addFile does not support local directories when not running " +
"local mode.")
}
if (!recursive && isDir) {
throw new SparkException(s"Added file $hadoopPath is a directory and recursive is not " +
"turned on.")
}
} else {
// SPARK-17650: Make sure this is a valid URL before adding it to the list of dependencies
Utils.validateURL(uri)
}
val key = if (!isLocal && scheme == "file") {
env.rpcEnv.fileServer.addFile(new File(uri.getPath))
} else {
if (uri.getScheme == null) {
schemeCorrectedURI.toString
} else {
path
}
}
val timestamp = System.currentTimeMillis
if (addedFiles.putIfAbsent(key, timestamp).isEmpty) {
logInfo(s"Added file $path at $key with timestamp $timestamp")
// Fetch the file locally so that closures which are run on the driver can still use the
// SparkFiles API to access files.
Utils.fetchFile(uri.toString, new File(SparkFiles.getRootDirectory()), conf,
env.securityManager, hadoopConfiguration, timestamp, useCache = false)
postEnvironmentUpdate()
} else {
logWarning(s"The path $path has been added already. Overwriting of added paths " +
"is not supported in the current version.")
}
}
/**
* :: DeveloperApi ::
* Register a listener to receive up-calls from events that happen during execution.
*/
@DeveloperApi
def addSparkListener(listener: SparkListenerInterface): Unit = {
listenerBus.addToSharedQueue(listener)
}
/**
* :: DeveloperApi ::
* Deregister the listener from Spark's listener bus.
*/
@DeveloperApi
def removeSparkListener(listener: SparkListenerInterface): Unit = {
listenerBus.removeListener(listener)
}
private[spark] def getExecutorIds(): Seq[String] = {
schedulerBackend match {
case b: ExecutorAllocationClient =>
b.getExecutorIds()
case _ =>
logWarning("Requesting executors is not supported by current scheduler.")
Nil
}
}
/**
* Get the max number of tasks that can be concurrent launched based on the resources
* could be used, even if some of them are being used at the moment.
* Note that please don't cache the value returned by this method, because the number can change
* due to add/remove executors.
*
* @return The max number of tasks that can be concurrent launched currently.
*/
private[spark] def maxNumConcurrentTasks(): Int = schedulerBackend.maxNumConcurrentTasks()
/**
* Update the cluster manager on our scheduling needs. Three bits of information are included
* to help it make decisions.
* @param numExecutors The total number of executors we'd like to have. The cluster manager
* shouldn't kill any running executor to reach this number, but,
* if all existing executors were to die, this is the number of executors
* we'd want to be allocated.
* @param localityAwareTasks The number of tasks in all active stages that have a locality
* preferences. This includes running, pending, and completed tasks.
* @param hostToLocalTaskCount A map of hosts to the number of tasks from all active stages
* that would like to like to run on that host.
* This includes running, pending, and completed tasks.
* @return whether the request is acknowledged by the cluster manager.
*/
@DeveloperApi
def requestTotalExecutors(
numExecutors: Int,
localityAwareTasks: Int,
hostToLocalTaskCount: scala.collection.immutable.Map[String, Int]
): Boolean = {
schedulerBackend match {
case b: ExecutorAllocationClient =>
b.requestTotalExecutors(numExecutors, localityAwareTasks, hostToLocalTaskCount)
case _ =>
logWarning("Requesting executors is not supported by current scheduler.")
false
}
}
/**
* :: DeveloperApi ::
* Request an additional number of executors from the cluster manager.
* @return whether the request is received.
*/
@DeveloperApi
def requestExecutors(numAdditionalExecutors: Int): Boolean = {
schedulerBackend match {
case b: ExecutorAllocationClient =>
b.requestExecutors(numAdditionalExecutors)
case _ =>
logWarning("Requesting executors is not supported by current scheduler.")
false
}
}
/**
* :: DeveloperApi ::
* Request that the cluster manager kill the specified executors.
*
* This is not supported when dynamic allocation is turned on.
*
* @note This is an indication to the cluster manager that the application wishes to adjust
* its resource usage downwards. If the application wishes to replace the executors it kills
* through this method with new ones, it should follow up explicitly with a call to
* {{SparkContext#requestExecutors}}.
*
* @return whether the request is received.
*/
@DeveloperApi
def killExecutors(executorIds: Seq[String]): Boolean = {
schedulerBackend match {
case b: ExecutorAllocationClient =>
require(executorAllocationManager.isEmpty,
"killExecutors() unsupported with Dynamic Allocation turned on")
b.killExecutors(executorIds, adjustTargetNumExecutors = true, countFailures = false,
force = true).nonEmpty
case _ =>
logWarning("Killing executors is not supported by current scheduler.")
false
}
}
/**
* :: DeveloperApi ::
* Request that the cluster manager kill the specified executor.
*
* @note This is an indication to the cluster manager that the application wishes to adjust
* its resource usage downwards. If the application wishes to replace the executor it kills
* through this method with a new one, it should follow up explicitly with a call to
* {{SparkContext#requestExecutors}}.
*
* @return whether the request is received.
*/
@DeveloperApi
def killExecutor(executorId: String): Boolean = killExecutors(Seq(executorId))
/**
* Request that the cluster manager kill the specified executor without adjusting the
* application resource requirements.
*
* The effect is that a new executor will be launched in place of the one killed by
* this request. This assumes the cluster manager will automatically and eventually
* fulfill all missing application resource requests.
*
* @note The replace is by no means guaranteed; another application on the same cluster
* can steal the window of opportunity and acquire this application's resources in the
* mean time.
*
* @return whether the request is received.
*/
private[spark] def killAndReplaceExecutor(executorId: String): Boolean = {
schedulerBackend match {
case b: ExecutorAllocationClient =>
b.killExecutors(Seq(executorId), adjustTargetNumExecutors = false, countFailures = true,
force = true).nonEmpty
case _ =>
logWarning("Killing executors is not supported by current scheduler.")
false
}
}
/** The version of Spark on which this application is running. */
def version: String = SPARK_VERSION
/**
* Return a map from the slave to the max memory available for caching and the remaining
* memory available for caching.
*/
def getExecutorMemoryStatus: Map[String, (Long, Long)] = {
assertNotStopped()
env.blockManager.master.getMemoryStatus.map { case(blockManagerId, mem) =>
(blockManagerId.host + ":" + blockManagerId.port, mem)
}
}
/**
* :: DeveloperApi ::
* Return information about what RDDs are cached, if they are in mem or on disk, how much space
* they take, etc.
*/
@DeveloperApi
def getRDDStorageInfo: Array[RDDInfo] = {
getRDDStorageInfo(_ => true)
}
private[spark] def getRDDStorageInfo(filter: RDD[_] => Boolean): Array[RDDInfo] = {
assertNotStopped()
val rddInfos = persistentRdds.values.filter(filter).map(RDDInfo.fromRdd).toArray
rddInfos.foreach { rddInfo =>
val rddId = rddInfo.id
val rddStorageInfo = statusStore.asOption(statusStore.rdd(rddId))
rddInfo.numCachedPartitions = rddStorageInfo.map(_.numCachedPartitions).getOrElse(0)
rddInfo.memSize = rddStorageInfo.map(_.memoryUsed).getOrElse(0L)
rddInfo.diskSize = rddStorageInfo.map(_.diskUsed).getOrElse(0L)
}
rddInfos.filter(_.isCached)
}
/**
* Returns an immutable map of RDDs that have marked themselves as persistent via cache() call.
*
* @note This does not necessarily mean the caching or computation was successful.
*/
def getPersistentRDDs: Map[Int, RDD[_]] = persistentRdds.toMap
/**
* :: DeveloperApi ::
* Return pools for fair scheduler
*/
@DeveloperApi
def getAllPools: Seq[Schedulable] = {
assertNotStopped()
// TODO(xiajunluan): We should take nested pools into account
taskScheduler.rootPool.schedulableQueue.asScala.toSeq
}
/**
* :: DeveloperApi ::
* Return the pool associated with the given name, if one exists
*/
@DeveloperApi
def getPoolForName(pool: String): Option[Schedulable] = {
assertNotStopped()
Option(taskScheduler.rootPool.schedulableNameToSchedulable.get(pool))
}
/**
* Return current scheduling mode
*/
def getSchedulingMode: SchedulingMode.SchedulingMode = {
assertNotStopped()
taskScheduler.schedulingMode
}
/**
* Gets the locality information associated with the partition in a particular rdd
* @param rdd of interest
* @param partition to be looked up for locality
* @return list of preferred locations for the partition
*/
private [spark] def getPreferredLocs(rdd: RDD[_], partition: Int): Seq[TaskLocation] = {
dagScheduler.getPreferredLocs(rdd, partition)
}
/**
* Register an RDD to be persisted in memory and/or disk storage
*/
private[spark] def persistRDD(rdd: RDD[_]): Unit = {
persistentRdds(rdd.id) = rdd
}
/**
* Unpersist an RDD from memory and/or disk storage
*/
private[spark] def unpersistRDD(rddId: Int, blocking: Boolean): Unit = {
env.blockManager.master.removeRdd(rddId, blocking)
persistentRdds.remove(rddId)
listenerBus.post(SparkListenerUnpersistRDD(rddId))
}
/**
* Adds a JAR dependency for all tasks to be executed on this `SparkContext` in the future.
*
* If a jar is added during execution, it will not be available until the next TaskSet starts.
*
* @param path can be either a local file, a file in HDFS (or other Hadoop-supported filesystems),
* an HTTP, HTTPS or FTP URI, or local:/path for a file on every worker node.
*
* @note A path can be added only once. Subsequent additions of the same path are ignored.
*/
def addJar(path: String): Unit = {
def addLocalJarFile(file: File): String = {
try {
if (!file.exists()) {
throw new FileNotFoundException(s"Jar ${file.getAbsolutePath} not found")
}
if (file.isDirectory) {
throw new IllegalArgumentException(
s"Directory ${file.getAbsoluteFile} is not allowed for addJar")
}
env.rpcEnv.fileServer.addJar(file)
} catch {
case NonFatal(e) =>
logError(s"Failed to add $path to Spark environment", e)
null
}
}
def checkRemoteJarFile(path: String): String = {
val hadoopPath = new Path(path)
val scheme = hadoopPath.toUri.getScheme
if (!Array("http", "https", "ftp").contains(scheme)) {
try {
val fs = hadoopPath.getFileSystem(hadoopConfiguration)
if (!fs.exists(hadoopPath)) {
throw new FileNotFoundException(s"Jar ${path} not found")
}
if (fs.isDirectory(hadoopPath)) {
throw new IllegalArgumentException(
s"Directory ${path} is not allowed for addJar")
}
path
} catch {
case NonFatal(e) =>
logError(s"Failed to add $path to Spark environment", e)
null
}
} else {
path
}
}
if (path == null || path.isEmpty) {
logWarning("null or empty path specified as parameter to addJar")
} else {
val key = if (path.contains("\\")) {
// For local paths with backslashes on Windows, URI throws an exception
addLocalJarFile(new File(path))
} else {
val uri = new Path(path).toUri
// SPARK-17650: Make sure this is a valid URL before adding it to the list of dependencies
Utils.validateURL(uri)
uri.getScheme match {
// A JAR file which exists only on the driver node
case null =>
// SPARK-22585 path without schema is not url encoded
addLocalJarFile(new File(uri.getPath))
// A JAR file which exists only on the driver node
case "file" => addLocalJarFile(new File(uri.getPath))
// A JAR file which exists locally on every worker node
case "local" => "file:" + uri.getPath
case _ => checkRemoteJarFile(path)
}
}
if (key != null) {
val timestamp = System.currentTimeMillis
if (addedJars.putIfAbsent(key, timestamp).isEmpty) {
logInfo(s"Added JAR $path at $key with timestamp $timestamp")
postEnvironmentUpdate()
} else {
logWarning(s"The jar $path has been added already. Overwriting of added jars " +
"is not supported in the current version.")
}
}
}
}
/**
* Returns a list of jar files that are added to resources.
*/
def listJars(): Seq[String] = addedJars.keySet.toSeq
/**
* When stopping SparkContext inside Spark components, it's easy to cause dead-lock since Spark
* may wait for some internal threads to finish. It's better to use this method to stop
* SparkContext instead.
*/
private[spark] def stopInNewThread(): Unit = {
new Thread("stop-spark-context") {
setDaemon(true)
override def run(): Unit = {
try {
SparkContext.this.stop()
} catch {
case e: Throwable =>
logError(e.getMessage, e)
throw e
}
}
}.start()
}
/**
* Shut down the SparkContext.
*/
def stop(): Unit = {
if (LiveListenerBus.withinListenerThread.value) {
throw new SparkException(s"Cannot stop SparkContext within listener bus thread.")
}
// Use the stopping variable to ensure no contention for the stop scenario.
// Still track the stopped variable for use elsewhere in the code.
if (!stopped.compareAndSet(false, true)) {
logInfo("SparkContext already stopped.")
return
}
if (_shutdownHookRef != null) {
ShutdownHookManager.removeShutdownHook(_shutdownHookRef)
}
if (listenerBus != null) {
Utils.tryLogNonFatalError {
postApplicationEnd()
}
}
Utils.tryLogNonFatalError {
_driverLogger.foreach(_.stop())
}
Utils.tryLogNonFatalError {
_ui.foreach(_.stop())
}
if (env != null) {
Utils.tryLogNonFatalError {
env.metricsSystem.report()
}
}
Utils.tryLogNonFatalError {
_cleaner.foreach(_.stop())
}
Utils.tryLogNonFatalError {
_executorAllocationManager.foreach(_.stop())
}
if (_dagScheduler != null) {
Utils.tryLogNonFatalError {
_dagScheduler.stop()
}
_dagScheduler = null
}
if (_listenerBusStarted) {
Utils.tryLogNonFatalError {
listenerBus.stop()
_listenerBusStarted = false
}
}
Utils.tryLogNonFatalError {
_plugins.foreach(_.shutdown())
}
Utils.tryLogNonFatalError {
_eventLogger.foreach(_.stop())
}
if (_heartbeater != null) {
Utils.tryLogNonFatalError {
_heartbeater.stop()
}
_heartbeater = null
}
if (_shuffleDriverComponents != null) {
Utils.tryLogNonFatalError {
_shuffleDriverComponents.cleanupApplication()
}
}
if (env != null && _heartbeatReceiver != null) {
Utils.tryLogNonFatalError {
env.rpcEnv.stop(_heartbeatReceiver)
}
}
Utils.tryLogNonFatalError {
_progressBar.foreach(_.stop())
}
_taskScheduler = null
// TODO: Cache.stop()?
if (_env != null) {
Utils.tryLogNonFatalError {
_env.stop()
}
SparkEnv.set(null)
}
if (_statusStore != null) {
_statusStore.close()
}
// Clear this `InheritableThreadLocal`, or it will still be inherited in child threads even this
// `SparkContext` is stopped.
localProperties.remove()
// Unset YARN mode system env variable, to allow switching between cluster types.
SparkContext.clearActiveContext()
logInfo("Successfully stopped SparkContext")
}
/**
* Get Spark's home location from either a value set through the constructor,
* or the spark.home Java property, or the SPARK_HOME environment variable
* (in that order of preference). If neither of these is set, return None.
*/
private[spark] def getSparkHome(): Option[String] = {
conf.getOption("spark.home").orElse(Option(System.getenv("SPARK_HOME")))
}
/**
* Set the thread-local property for overriding the call sites
* of actions and RDDs.
*/
def setCallSite(shortCallSite: String): Unit = {
setLocalProperty(CallSite.SHORT_FORM, shortCallSite)
}
/**
* Set the thread-local property for overriding the call sites
* of actions and RDDs.
*/
private[spark] def setCallSite(callSite: CallSite): Unit = {
setLocalProperty(CallSite.SHORT_FORM, callSite.shortForm)
setLocalProperty(CallSite.LONG_FORM, callSite.longForm)
}
/**
* Clear the thread-local property for overriding the call sites
* of actions and RDDs.
*/
def clearCallSite(): Unit = {
setLocalProperty(CallSite.SHORT_FORM, null)
setLocalProperty(CallSite.LONG_FORM, null)
}
/**
* Capture the current user callsite and return a formatted version for printing. If the user
* has overridden the call site using `setCallSite()`, this will return the user's version.
*/
private[spark] def getCallSite(): CallSite = {
lazy val callSite = Utils.getCallSite()
CallSite(
Option(getLocalProperty(CallSite.SHORT_FORM)).getOrElse(callSite.shortForm),
Option(getLocalProperty(CallSite.LONG_FORM)).getOrElse(callSite.longForm)
)
}
/**
* Run a function on a given set of partitions in an RDD and pass the results to the given
* handler function. This is the main entry point for all actions in Spark.
*
* @param rdd target RDD to run tasks on
* @param func a function to run on each partition of the RDD
* @param partitions set of partitions to run on; some jobs may not want to compute on all
* partitions of the target RDD, e.g. for operations like `first()`
* @param resultHandler callback to pass each result to
*/
def runJob[T, U: ClassTag](
rdd: RDD[T],
func: (TaskContext, Iterator[T]) => U,
partitions: Seq[Int],
resultHandler: (Int, U) => Unit): Unit = {
if (stopped.get()) {
throw new IllegalStateException("SparkContext has been shutdown")
}
val callSite = getCallSite
val cleanedFunc = clean(func)
logInfo("Starting job: " + callSite.shortForm)
if (conf.getBoolean("spark.logLineage", false)) {
logInfo("RDD's recursive dependencies:\n" + rdd.toDebugString)
}
dagScheduler.runJob(rdd, cleanedFunc, partitions, callSite, resultHandler, localProperties.get)
progressBar.foreach(_.finishAll())
rdd.doCheckpoint()
}
/**
* Run a function on a given set of partitions in an RDD and return the results as an array.
* The function that is run against each partition additionally takes `TaskContext` argument.
*
* @param rdd target RDD to run tasks on
* @param func a function to run on each partition of the RDD
* @param partitions set of partitions to run on; some jobs may not want to compute on all
* partitions of the target RDD, e.g. for operations like `first()`
* @return in-memory collection with a result of the job (each collection element will contain
* a result from one partition)
*/
def runJob[T, U: ClassTag](
rdd: RDD[T],
func: (TaskContext, Iterator[T]) => U,
partitions: Seq[Int]): Array[U] = {
val results = new Array[U](partitions.size)
runJob[T, U](rdd, func, partitions, (index, res) => results(index) = res)
results
}
/**
* Run a function on a given set of partitions in an RDD and return the results as an array.
*
* @param rdd target RDD to run tasks on
* @param func a function to run on each partition of the RDD
* @param partitions set of partitions to run on; some jobs may not want to compute on all
* partitions of the target RDD, e.g. for operations like `first()`
* @return in-memory collection with a result of the job (each collection element will contain
* a result from one partition)
*/
def runJob[T, U: ClassTag](
rdd: RDD[T],
func: Iterator[T] => U,
partitions: Seq[Int]): Array[U] = {
val cleanedFunc = clean(func)
runJob(rdd, (ctx: TaskContext, it: Iterator[T]) => cleanedFunc(it), partitions)
}
/**
* Run a job on all partitions in an RDD and return the results in an array. The function
* that is run against each partition additionally takes `TaskContext` argument.
*
* @param rdd target RDD to run tasks on
* @param func a function to run on each partition of the RDD
* @return in-memory collection with a result of the job (each collection element will contain
* a result from one partition)
*/
def runJob[T, U: ClassTag](rdd: RDD[T], func: (TaskContext, Iterator[T]) => U): Array[U] = {
runJob(rdd, func, 0 until rdd.partitions.length)
}
/**
* Run a job on all partitions in an RDD and return the results in an array.
*
* @param rdd target RDD to run tasks on
* @param func a function to run on each partition of the RDD
* @return in-memory collection with a result of the job (each collection element will contain
* a result from one partition)
*/
def runJob[T, U: ClassTag](rdd: RDD[T], func: Iterator[T] => U): Array[U] = {
runJob(rdd, func, 0 until rdd.partitions.length)
}
/**
* Run a job on all partitions in an RDD and pass the results to a handler function. The function
* that is run against each partition additionally takes `TaskContext` argument.
*
* @param rdd target RDD to run tasks on
* @param processPartition a function to run on each partition of the RDD
* @param resultHandler callback to pass each result to
*/
def runJob[T, U: ClassTag](
rdd: RDD[T],
processPartition: (TaskContext, Iterator[T]) => U,
resultHandler: (Int, U) => Unit): Unit = {
runJob[T, U](rdd, processPartition, 0 until rdd.partitions.length, resultHandler)
}
/**
* Run a job on all partitions in an RDD and pass the results to a handler function.
*
* @param rdd target RDD to run tasks on
* @param processPartition a function to run on each partition of the RDD
* @param resultHandler callback to pass each result to
*/
def runJob[T, U: ClassTag](
rdd: RDD[T],
processPartition: Iterator[T] => U,
resultHandler: (Int, U) => Unit): Unit = {
val processFunc = (context: TaskContext, iter: Iterator[T]) => processPartition(iter)
runJob[T, U](rdd, processFunc, 0 until rdd.partitions.length, resultHandler)
}
/**
* :: DeveloperApi ::
* Run a job that can return approximate results.
*
* @param rdd target RDD to run tasks on
* @param func a function to run on each partition of the RDD
* @param evaluator `ApproximateEvaluator` to receive the partial results
* @param timeout maximum time to wait for the job, in milliseconds
* @return partial result (how partial depends on whether the job was finished before or
* after timeout)
*/
@DeveloperApi
def runApproximateJob[T, U, R](
rdd: RDD[T],
func: (TaskContext, Iterator[T]) => U,
evaluator: ApproximateEvaluator[U, R],
timeout: Long): PartialResult[R] = {
assertNotStopped()
val callSite = getCallSite
logInfo("Starting job: " + callSite.shortForm)
val start = System.nanoTime
val cleanedFunc = clean(func)
val result = dagScheduler.runApproximateJob(rdd, cleanedFunc, evaluator, callSite, timeout,
localProperties.get)
logInfo(
"Job finished: " + callSite.shortForm + ", took " + (System.nanoTime - start) / 1e9 + " s")
result
}
/**
* Submit a job for execution and return a FutureJob holding the result.
*
* @param rdd target RDD to run tasks on
* @param processPartition a function to run on each partition of the RDD
* @param partitions set of partitions to run on; some jobs may not want to compute on all
* partitions of the target RDD, e.g. for operations like `first()`
* @param resultHandler callback to pass each result to
* @param resultFunc function to be executed when the result is ready
*/
def submitJob[T, U, R](
rdd: RDD[T],
processPartition: Iterator[T] => U,
partitions: Seq[Int],
resultHandler: (Int, U) => Unit,
resultFunc: => R): SimpleFutureAction[R] =
{
assertNotStopped()
val cleanF = clean(processPartition)
val callSite = getCallSite
val waiter = dagScheduler.submitJob(
rdd,
(context: TaskContext, iter: Iterator[T]) => cleanF(iter),
partitions,
callSite,
resultHandler,
localProperties.get)
new SimpleFutureAction(waiter, resultFunc)
}
/**
* Submit a map stage for execution. This is currently an internal API only, but might be
* promoted to DeveloperApi in the future.
*/
private[spark] def submitMapStage[K, V, C](dependency: ShuffleDependency[K, V, C])
: SimpleFutureAction[MapOutputStatistics] = {
assertNotStopped()
val callSite = getCallSite()
var result: MapOutputStatistics = null
val waiter = dagScheduler.submitMapStage(
dependency,
(r: MapOutputStatistics) => { result = r },
callSite,
localProperties.get)
new SimpleFutureAction[MapOutputStatistics](waiter, result)
}
/**
* Cancel active jobs for the specified group. See `org.apache.spark.SparkContext.setJobGroup`
* for more information.
*/
def cancelJobGroup(groupId: String): Unit = {
assertNotStopped()
dagScheduler.cancelJobGroup(groupId)
}
/** Cancel all jobs that have been scheduled or are running. */
def cancelAllJobs(): Unit = {
assertNotStopped()
dagScheduler.cancelAllJobs()
}
/**
* Cancel a given job if it's scheduled or running.
*
* @param jobId the job ID to cancel
* @param reason optional reason for cancellation
* @note Throws `InterruptedException` if the cancel message cannot be sent
*/
def cancelJob(jobId: Int, reason: String): Unit = {
dagScheduler.cancelJob(jobId, Option(reason))
}
/**
* Cancel a given job if it's scheduled or running.
*
* @param jobId the job ID to cancel
* @note Throws `InterruptedException` if the cancel message cannot be sent
*/
def cancelJob(jobId: Int): Unit = {
dagScheduler.cancelJob(jobId, None)
}
/**
* Cancel a given stage and all jobs associated with it.
*
* @param stageId the stage ID to cancel
* @param reason reason for cancellation
* @note Throws `InterruptedException` if the cancel message cannot be sent
*/
def cancelStage(stageId: Int, reason: String): Unit = {
dagScheduler.cancelStage(stageId, Option(reason))
}
/**
* Cancel a given stage and all jobs associated with it.
*
* @param stageId the stage ID to cancel
* @note Throws `InterruptedException` if the cancel message cannot be sent
*/
def cancelStage(stageId: Int): Unit = {
dagScheduler.cancelStage(stageId, None)
}
/**
* Kill and reschedule the given task attempt. Task ids can be obtained from the Spark UI
* or through SparkListener.onTaskStart.
*
* @param taskId the task ID to kill. This id uniquely identifies the task attempt.
* @param interruptThread whether to interrupt the thread running the task.
* @param reason the reason for killing the task, which should be a short string. If a task
* is killed multiple times with different reasons, only one reason will be reported.
*
* @return Whether the task was successfully killed.
*/
def killTaskAttempt(
taskId: Long,
interruptThread: Boolean = true,
reason: String = "killed via SparkContext.killTaskAttempt"): Boolean = {
dagScheduler.killTaskAttempt(taskId, interruptThread, reason)
}
/**
* Clean a closure to make it ready to be serialized and sent to tasks
* (removes unreferenced variables in $outer's, updates REPL variables)
* If checkSerializable is set, clean will also proactively
* check to see if f is serializable and throw a SparkException
* if not.
*
* @param f the closure to clean
* @param checkSerializable whether or not to immediately check f for serializability
* @throws SparkException if checkSerializable is set but f is not
* serializable
* @return the cleaned closure
*/
private[spark] def clean[F <: AnyRef](f: F, checkSerializable: Boolean = true): F = {
ClosureCleaner.clean(f, checkSerializable)
f
}
/**
* Set the directory under which RDDs are going to be checkpointed.
* @param directory path to the directory where checkpoint files will be stored
* (must be HDFS path if running in cluster)
*/
def setCheckpointDir(directory: String): Unit = {
// If we are running on a cluster, log a warning if the directory is local.
// Otherwise, the driver may attempt to reconstruct the checkpointed RDD from
// its own local file system, which is incorrect because the checkpoint files
// are actually on the executor machines.
if (!isLocal && Utils.nonLocalPaths(directory).isEmpty) {
logWarning("Spark is not running in local mode, therefore the checkpoint directory " +
s"must not be on the local filesystem. Directory '$directory' " +
"appears to be on the local filesystem.")
}
checkpointDir = Option(directory).map { dir =>
val path = new Path(dir, UUID.randomUUID().toString)
val fs = path.getFileSystem(hadoopConfiguration)
fs.mkdirs(path)
fs.getFileStatus(path).getPath.toString
}
}
def getCheckpointDir: Option[String] = checkpointDir
/** Default level of parallelism to use when not given by user (e.g. parallelize and makeRDD). */
def defaultParallelism: Int = {
assertNotStopped()
taskScheduler.defaultParallelism
}
/**
* Default min number of partitions for Hadoop RDDs when not given by user
* Notice that we use math.min so the "defaultMinPartitions" cannot be higher than 2.
* The reasons for this are discussed in https://github.com/mesos/spark/pull/718
*/
def defaultMinPartitions: Int = math.min(defaultParallelism, 2)
private val nextShuffleId = new AtomicInteger(0)
private[spark] def newShuffleId(): Int = nextShuffleId.getAndIncrement()
private val nextRddId = new AtomicInteger(0)
/** Register a new RDD, returning its RDD ID */
private[spark] def newRddId(): Int = nextRddId.getAndIncrement()
/**
* Registers listeners specified in spark.extraListeners, then starts the listener bus.
* This should be called after all internal listeners have been registered with the listener bus
* (e.g. after the web UI and event logging listeners have been registered).
*/
private def setupAndStartListenerBus(): Unit = {
try {
conf.get(EXTRA_LISTENERS).foreach { classNames =>
val listeners = Utils.loadExtensions(classOf[SparkListenerInterface], classNames, conf)
listeners.foreach { listener =>
listenerBus.addToSharedQueue(listener)
logInfo(s"Registered listener ${listener.getClass().getName()}")
}
}
} catch {
case e: Exception =>
try {
stop()
} finally {
throw new SparkException(s"Exception when registering SparkListener", e)
}
}
listenerBus.start(this, _env.metricsSystem)
_listenerBusStarted = true
}
/** Post the application start event */
private def postApplicationStart(): Unit = {
// Note: this code assumes that the task scheduler has been initialized and has contacted
// the cluster manager to get an application ID (in case the cluster manager provides one).
listenerBus.post(SparkListenerApplicationStart(appName, Some(applicationId),
startTime, sparkUser, applicationAttemptId, schedulerBackend.getDriverLogUrls,
schedulerBackend.getDriverAttributes))
_driverLogger.foreach(_.startSync(_hadoopConfiguration))
}
/** Post the application end event */
private def postApplicationEnd(): Unit = {
listenerBus.post(SparkListenerApplicationEnd(System.currentTimeMillis))
}
/** Post the environment update event once the task scheduler is ready */
private def postEnvironmentUpdate(): Unit = {
if (taskScheduler != null) {
val schedulingMode = getSchedulingMode.toString
val addedJarPaths = addedJars.keys.toSeq
val addedFilePaths = addedFiles.keys.toSeq
val environmentDetails = SparkEnv.environmentDetails(conf, hadoopConfiguration,
schedulingMode, addedJarPaths, addedFilePaths)
val environmentUpdate = SparkListenerEnvironmentUpdate(environmentDetails)
listenerBus.post(environmentUpdate)
}
}
/** Reports heartbeat metrics for the driver. */
private def reportHeartBeat(executorMetricsSource: Option[ExecutorMetricsSource]): Unit = {
val currentMetrics = ExecutorMetrics.getCurrentMetrics(env.memoryManager)
executorMetricsSource.foreach(_.updateMetricsSnapshot(currentMetrics))
val driverUpdates = new HashMap[(Int, Int), ExecutorMetrics]
// In the driver, we do not track per-stage metrics, so use a dummy stage for the key
driverUpdates.put(EventLoggingListener.DRIVER_STAGE_KEY, new ExecutorMetrics(currentMetrics))
val accumUpdates = new Array[(Long, Int, Int, Seq[AccumulableInfo])](0)
listenerBus.post(SparkListenerExecutorMetricsUpdate("driver", accumUpdates,
driverUpdates))
}
// In order to prevent multiple SparkContexts from being active at the same time, mark this
// context as having finished construction.
// NOTE: this must be placed at the end of the SparkContext constructor.
SparkContext.setActiveContext(this)
}
/**
* The SparkContext object contains a number of implicit conversions and parameters for use with
* various Spark features.
*/
object SparkContext extends Logging {
private val VALID_LOG_LEVELS =
Set("ALL", "DEBUG", "ERROR", "FATAL", "INFO", "OFF", "TRACE", "WARN")
/**
* Lock that guards access to global variables that track SparkContext construction.
*/
private val SPARK_CONTEXT_CONSTRUCTOR_LOCK = new Object()
/**
* The active, fully-constructed SparkContext. If no SparkContext is active, then this is `null`.
*
* Access to this field is guarded by `SPARK_CONTEXT_CONSTRUCTOR_LOCK`.
*/
private val activeContext: AtomicReference[SparkContext] =
new AtomicReference[SparkContext](null)
/**
* Points to a partially-constructed SparkContext if another thread is in the SparkContext
* constructor, or `None` if no SparkContext is being constructed.
*
* Access to this field is guarded by `SPARK_CONTEXT_CONSTRUCTOR_LOCK`.
*/
private var contextBeingConstructed: Option[SparkContext] = None
/**
* Called to ensure that no other SparkContext is running in this JVM.
*
* Throws an exception if a running context is detected and logs a warning if another thread is
* constructing a SparkContext. This warning is necessary because the current locking scheme
* prevents us from reliably distinguishing between cases where another context is being
* constructed and cases where another constructor threw an exception.
*/
private def assertNoOtherContextIsRunning(sc: SparkContext): Unit = {
SPARK_CONTEXT_CONSTRUCTOR_LOCK.synchronized {
Option(activeContext.get()).filter(_ ne sc).foreach { ctx =>
val errMsg = "Only one SparkContext should be running in this JVM (see SPARK-2243)." +
s"The currently running SparkContext was created at:\n${ctx.creationSite.longForm}"
throw new SparkException(errMsg)
}
contextBeingConstructed.filter(_ ne sc).foreach { otherContext =>
// Since otherContext might point to a partially-constructed context, guard against
// its creationSite field being null:
val otherContextCreationSite =
Option(otherContext.creationSite).map(_.longForm).getOrElse("unknown location")
val warnMsg = "Another SparkContext is being constructed (or threw an exception in its" +
" constructor). This may indicate an error, since only one SparkContext should be" +
" running in this JVM (see SPARK-2243)." +
s" The other SparkContext was created at:\n$otherContextCreationSite"
logWarning(warnMsg)
}
}
}
/**
* Called to ensure that SparkContext is created or accessed only on the Driver.
*
* Throws an exception if a SparkContext is about to be created in executors.
*/
private def assertOnDriver(): Unit = {
if (TaskContext.get != null) {
// we're accessing it during task execution, fail.
throw new IllegalStateException(
"SparkContext should only be created and accessed on the driver.")
}
}
/**
* This function may be used to get or instantiate a SparkContext and register it as a
* singleton object. Because we can only have one active SparkContext per JVM,
* this is useful when applications may wish to share a SparkContext.
*
* @param config `SparkConfig` that will be used for initialisation of the `SparkContext`
* @return current `SparkContext` (or a new one if it wasn't created before the function call)
*/
def getOrCreate(config: SparkConf): SparkContext = {
// Synchronize to ensure that multiple create requests don't trigger an exception
// from assertNoOtherContextIsRunning within setActiveContext
SPARK_CONTEXT_CONSTRUCTOR_LOCK.synchronized {
if (activeContext.get() == null) {
setActiveContext(new SparkContext(config))
} else {
if (config.getAll.nonEmpty) {
logWarning("Using an existing SparkContext; some configuration may not take effect.")
}
}
activeContext.get()
}
}
/**
* This function may be used to get or instantiate a SparkContext and register it as a
* singleton object. Because we can only have one active SparkContext per JVM,
* this is useful when applications may wish to share a SparkContext.
*
* This method allows not passing a SparkConf (useful if just retrieving).
*
* @return current `SparkContext` (or a new one if wasn't created before the function call)
*/
def getOrCreate(): SparkContext = {
SPARK_CONTEXT_CONSTRUCTOR_LOCK.synchronized {
if (activeContext.get() == null) {
setActiveContext(new SparkContext())
}
activeContext.get()
}
}
/** Return the current active [[SparkContext]] if any. */
private[spark] def getActive: Option[SparkContext] = {
SPARK_CONTEXT_CONSTRUCTOR_LOCK.synchronized {
Option(activeContext.get())
}
}
/**
* Called at the beginning of the SparkContext constructor to ensure that no SparkContext is
* running. Throws an exception if a running context is detected and logs a warning if another
* thread is constructing a SparkContext. This warning is necessary because the current locking
* scheme prevents us from reliably distinguishing between cases where another context is being
* constructed and cases where another constructor threw an exception.
*/
private[spark] def markPartiallyConstructed(sc: SparkContext): Unit = {
SPARK_CONTEXT_CONSTRUCTOR_LOCK.synchronized {
assertNoOtherContextIsRunning(sc)
contextBeingConstructed = Some(sc)
}
}
/**
* Called at the end of the SparkContext constructor to ensure that no other SparkContext has
* raced with this constructor and started.
*/
private[spark] def setActiveContext(sc: SparkContext): Unit = {
SPARK_CONTEXT_CONSTRUCTOR_LOCK.synchronized {
assertNoOtherContextIsRunning(sc)
contextBeingConstructed = None
activeContext.set(sc)
}
}
/**
* Clears the active SparkContext metadata. This is called by `SparkContext#stop()`. It's
* also called in unit tests to prevent a flood of warnings from test suites that don't / can't
* properly clean up their SparkContexts.
*/
private[spark] def clearActiveContext(): Unit = {
SPARK_CONTEXT_CONSTRUCTOR_LOCK.synchronized {
activeContext.set(null)
}
}
private[spark] val SPARK_JOB_DESCRIPTION = "spark.job.description"
private[spark] val SPARK_JOB_GROUP_ID = "spark.jobGroup.id"
private[spark] val SPARK_JOB_INTERRUPT_ON_CANCEL = "spark.job.interruptOnCancel"
private[spark] val SPARK_SCHEDULER_POOL = "spark.scheduler.pool"
private[spark] val RDD_SCOPE_KEY = "spark.rdd.scope"
private[spark] val RDD_SCOPE_NO_OVERRIDE_KEY = "spark.rdd.scope.noOverride"
/**
* Executor id for the driver. In earlier versions of Spark, this was ``, but this was
* changed to `driver` because the angle brackets caused escaping issues in URLs and XML (see
* SPARK-6716 for more details).
*/
private[spark] val DRIVER_IDENTIFIER = "driver"
private implicit def arrayToArrayWritable[T <: Writable : ClassTag](arr: Iterable[T])
: ArrayWritable = {
def anyToWritable[U <: Writable](u: U): Writable = u
new ArrayWritable(classTag[T].runtimeClass.asInstanceOf[Class[Writable]],
arr.map(x => anyToWritable(x)).toArray)
}
/**
* Find the JAR from which a given class was loaded, to make it easy for users to pass
* their JARs to SparkContext.
*
* @param cls class that should be inside of the jar
* @return jar that contains the Class, `None` if not found
*/
def jarOfClass(cls: Class[_]): Option[String] = {
val uri = cls.getResource("/" + cls.getName.replace('.', '/') + ".class")
if (uri != null) {
val uriStr = uri.toString
if (uriStr.startsWith("jar:file:")) {
// URI will be of the form "jar:file:/path/foo.jar!/package/cls.class",
// so pull out the /path/foo.jar
Some(uriStr.substring("jar:file:".length, uriStr.indexOf('!')))
} else {
None
}
} else {
None
}
}
/**
* Find the JAR that contains the class of a particular object, to make it easy for users
* to pass their JARs to SparkContext. In most cases you can call jarOfObject(this) in
* your driver program.
*
* @param obj reference to an instance which class should be inside of the jar
* @return jar that contains the class of the instance, `None` if not found
*/
def jarOfObject(obj: AnyRef): Option[String] = jarOfClass(obj.getClass)
/**
* Creates a modified version of a SparkConf with the parameters that can be passed separately
* to SparkContext, to make it easier to write SparkContext's constructors. This ignores
* parameters that are passed as the default value of null, instead of throwing an exception
* like SparkConf would.
*/
private[spark] def updatedConf(
conf: SparkConf,
master: String,
appName: String,
sparkHome: String = null,
jars: Seq[String] = Nil,
environment: Map[String, String] = Map()): SparkConf =
{
val res = conf.clone()
res.setMaster(master)
res.setAppName(appName)
if (sparkHome != null) {
res.setSparkHome(sparkHome)
}
if (jars != null && !jars.isEmpty) {
res.setJars(jars)
}
res.setExecutorEnv(environment.toSeq)
res
}
/**
* The number of cores available to the driver to use for tasks such as I/O with Netty
*/
private[spark] def numDriverCores(master: String): Int = {
numDriverCores(master, null)
}
/**
* The number of cores available to the driver to use for tasks such as I/O with Netty
*/
private[spark] def numDriverCores(master: String, conf: SparkConf): Int = {
def convertToInt(threads: String): Int = {
if (threads == "*") Runtime.getRuntime.availableProcessors() else threads.toInt
}
master match {
case "local" => 1
case SparkMasterRegex.LOCAL_N_REGEX(threads) => convertToInt(threads)
case SparkMasterRegex.LOCAL_N_FAILURES_REGEX(threads, _) => convertToInt(threads)
case "yarn" =>
if (conf != null && conf.get(SUBMIT_DEPLOY_MODE) == "cluster") {
conf.getInt(DRIVER_CORES.key, 0)
} else {
0
}
case _ => 0 // Either driver is not being used, or its core count will be interpolated later
}
}
/**
* Create a task scheduler based on a given master URL.
* Return a 2-tuple of the scheduler backend and the task scheduler.
*/
private def createTaskScheduler(
sc: SparkContext,
master: String,
deployMode: String): (SchedulerBackend, TaskScheduler) = {
import SparkMasterRegex._
// When running locally, don't try to re-execute tasks on failure.
val MAX_LOCAL_TASK_FAILURES = 1
// Ensure that executor's resources satisfies one or more tasks requirement.
def checkResourcesPerTask(clusterMode: Boolean, executorCores: Option[Int]): Unit = {
val taskCores = sc.conf.get(CPUS_PER_TASK)
val execCores = if (clusterMode) {
executorCores.getOrElse(sc.conf.get(EXECUTOR_CORES))
} else {
executorCores.get
}
// some cluster managers don't set the EXECUTOR_CORES config by default (standalone
// and mesos coarse grained), so we can't rely on that config for those.
var shouldCheckExecCores = executorCores.isDefined || sc.conf.contains(EXECUTOR_CORES) ||
(master.equalsIgnoreCase("yarn") || master.startsWith("k8s"))
shouldCheckExecCores &= !sc.conf.get(SKIP_VALIDATE_CORES_TESTING)
// Number of cores per executor must meet at least one task requirement.
if (shouldCheckExecCores && execCores < taskCores) {
throw new SparkException(s"The number of cores per executor (=$execCores) has to be >= " +
s"the task config: ${CPUS_PER_TASK.key} = $taskCores when run on $master.")
}
// Calculate the max slots each executor can provide based on resources available on each
// executor and resources required by each task.
val taskResourceRequirements = parseResourceRequirements(sc.conf, SPARK_TASK_PREFIX)
val executorResourcesAndAmounts = parseAllResourceRequests(sc.conf, SPARK_EXECUTOR_PREFIX)
.map(request => (request.id.resourceName, request.amount)).toMap
var (numSlots, limitingResourceName) = if (shouldCheckExecCores) {
(execCores / taskCores, "CPU")
} else {
(-1, "")
}
taskResourceRequirements.foreach { taskReq =>
// Make sure the executor resources were specified through config.
val execAmount = executorResourcesAndAmounts.getOrElse(taskReq.resourceName,
throw new SparkException("The executor resource config: " +
new ResourceID(SPARK_EXECUTOR_PREFIX, taskReq.resourceName).amountConf +
" needs to be specified since a task requirement config: " +
new ResourceID(SPARK_TASK_PREFIX, taskReq.resourceName).amountConf +
" was specified")
)
// Make sure the executor resources are large enough to launch at least one task.
if (execAmount < taskReq.amount) {
throw new SparkException("The executor resource config: " +
new ResourceID(SPARK_EXECUTOR_PREFIX, taskReq.resourceName).amountConf +
s" = $execAmount has to be >= the requested amount in task resource config: " +
new ResourceID(SPARK_TASK_PREFIX, taskReq.resourceName).amountConf +
s" = ${taskReq.amount}")
}
// Compare and update the max slots each executor can provide.
// If the configured amount per task was < 1.0, a task is subdividing
// executor resources. If the amount per task was > 1.0, the task wants
// multiple executor resources.
val resourceNumSlots = Math.floor(execAmount * taskReq.numParts / taskReq.amount).toInt
if (resourceNumSlots < numSlots) {
if (shouldCheckExecCores) {
throw new IllegalArgumentException("The number of slots on an executor has to be " +
"limited by the number of cores, otherwise you waste resources and " +
"dynamic allocation doesn't work properly. Your configuration has " +
s"core/task cpu slots = ${numSlots} and " +
s"${taskReq.resourceName} = ${resourceNumSlots}. " +
"Please adjust your configuration so that all resources require same number " +
"of executor slots.")
}
numSlots = resourceNumSlots
limitingResourceName = taskReq.resourceName
}
}
if(!shouldCheckExecCores) {
// if we can't rely on the executor cores config throw a warning for user
logWarning("Please ensure that the number of slots available on your " +
"executors is limited by the number of cores to task cpus and not another " +
"custom resource. If cores is not the limiting resource then dynamic " +
"allocation will not work properly!")
}
// warn if we would waste any resources due to another resource limiting the number of
// slots on an executor
taskResourceRequirements.foreach { taskReq =>
val execAmount = executorResourcesAndAmounts(taskReq.resourceName)
if ((numSlots * taskReq.amount / taskReq.numParts) < execAmount) {
val taskReqStr = if (taskReq.numParts > 1) {
s"${taskReq.amount}/${taskReq.numParts}"
} else {
s"${taskReq.amount}"
}
val resourceNumSlots = Math.floor(execAmount * taskReq.numParts / taskReq.amount).toInt
val message = s"The configuration of resource: ${taskReq.resourceName} " +
s"(exec = ${execAmount}, task = ${taskReqStr}, " +
s"runnable tasks = ${resourceNumSlots}) will " +
s"result in wasted resources due to resource ${limitingResourceName} limiting the " +
s"number of runnable tasks per executor to: ${numSlots}. Please adjust " +
s"your configuration."
if (sc.conf.get(RESOURCES_WARNING_TESTING)) {
throw new SparkException(message)
} else {
logWarning(message)
}
}
}
}
master match {
case "local" =>
checkResourcesPerTask(clusterMode = false, Some(1))
val scheduler = new TaskSchedulerImpl(sc, MAX_LOCAL_TASK_FAILURES, isLocal = true)
val backend = new LocalSchedulerBackend(sc.getConf, scheduler, 1)
scheduler.initialize(backend)
(backend, scheduler)
case LOCAL_N_REGEX(threads) =>
def localCpuCount: Int = Runtime.getRuntime.availableProcessors()
// local[*] estimates the number of cores on the machine; local[N] uses exactly N threads.
val threadCount = if (threads == "*") localCpuCount else threads.toInt
if (threadCount <= 0) {
throw new SparkException(s"Asked to run locally with $threadCount threads")
}
checkResourcesPerTask(clusterMode = false, Some(threadCount))
val scheduler = new TaskSchedulerImpl(sc, MAX_LOCAL_TASK_FAILURES, isLocal = true)
val backend = new LocalSchedulerBackend(sc.getConf, scheduler, threadCount)
scheduler.initialize(backend)
(backend, scheduler)
case LOCAL_N_FAILURES_REGEX(threads, maxFailures) =>
def localCpuCount: Int = Runtime.getRuntime.availableProcessors()
// local[*, M] means the number of cores on the computer with M failures
// local[N, M] means exactly N threads with M failures
val threadCount = if (threads == "*") localCpuCount else threads.toInt
checkResourcesPerTask(clusterMode = false, Some(threadCount))
val scheduler = new TaskSchedulerImpl(sc, maxFailures.toInt, isLocal = true)
val backend = new LocalSchedulerBackend(sc.getConf, scheduler, threadCount)
scheduler.initialize(backend)
(backend, scheduler)
case SPARK_REGEX(sparkUrl) =>
checkResourcesPerTask(clusterMode = true, None)
val scheduler = new TaskSchedulerImpl(sc)
val masterUrls = sparkUrl.split(",").map("spark://" + _)
val backend = new StandaloneSchedulerBackend(scheduler, sc, masterUrls)
scheduler.initialize(backend)
(backend, scheduler)
case LOCAL_CLUSTER_REGEX(numSlaves, coresPerSlave, memoryPerSlave) =>
checkResourcesPerTask(clusterMode = true, Some(coresPerSlave.toInt))
// Check to make sure memory requested <= memoryPerSlave. Otherwise Spark will just hang.
val memoryPerSlaveInt = memoryPerSlave.toInt
if (sc.executorMemory > memoryPerSlaveInt) {
throw new SparkException(
"Asked to launch cluster with %d MiB RAM / worker but requested %d MiB/worker".format(
memoryPerSlaveInt, sc.executorMemory))
}
// For host local mode setting the default of SHUFFLE_HOST_LOCAL_DISK_READING_ENABLED
// to false because this mode is intended to be used for testing and in this case all the
// executors are running on the same host. So if host local reading was enabled here then
// testing of the remote fetching would be secondary as setting this config explicitly to
// false would be required in most of the unit test (despite the fact that remote fetching
// is much more frequent in production).
sc.conf.setIfMissing(SHUFFLE_HOST_LOCAL_DISK_READING_ENABLED, false)
val scheduler = new TaskSchedulerImpl(sc)
val localCluster = new LocalSparkCluster(
numSlaves.toInt, coresPerSlave.toInt, memoryPerSlaveInt, sc.conf)
val masterUrls = localCluster.start()
val backend = new StandaloneSchedulerBackend(scheduler, sc, masterUrls)
scheduler.initialize(backend)
backend.shutdownCallback = (backend: StandaloneSchedulerBackend) => {
localCluster.stop()
}
(backend, scheduler)
case masterUrl =>
checkResourcesPerTask(clusterMode = true, None)
val cm = getClusterManager(masterUrl) match {
case Some(clusterMgr) => clusterMgr
case None => throw new SparkException("Could not parse Master URL: '" + master + "'")
}
try {
val scheduler = cm.createTaskScheduler(sc, masterUrl)
val backend = cm.createSchedulerBackend(sc, masterUrl, scheduler)
cm.initialize(scheduler, backend)
(backend, scheduler)
} catch {
case se: SparkException => throw se
case NonFatal(e) =>
throw new SparkException("External scheduler cannot be instantiated", e)
}
}
}
private def getClusterManager(url: String): Option[ExternalClusterManager] = {
val loader = Utils.getContextOrSparkClassLoader
val serviceLoaders =
ServiceLoader.load(classOf[ExternalClusterManager], loader).asScala.filter(_.canCreate(url))
if (serviceLoaders.size > 1) {
throw new SparkException(
s"Multiple external cluster managers registered for the url $url: $serviceLoaders")
}
serviceLoaders.headOption
}
}
/**
* A collection of regexes for extracting information from the master string.
*/
private object SparkMasterRegex {
// Regular expression used for local[N] and local[*] master formats
val LOCAL_N_REGEX = """local\[([0-9]+|\*)\]""".r
// Regular expression for local[N, maxRetries], used in tests with failing tasks
val LOCAL_N_FAILURES_REGEX = """local\[([0-9]+|\*)\s*,\s*([0-9]+)\]""".r
// Regular expression for simulating a Spark cluster of [N, cores, memory] locally
val LOCAL_CLUSTER_REGEX = """local-cluster\[\s*([0-9]+)\s*,\s*([0-9]+)\s*,\s*([0-9]+)\s*]""".r
// Regular expression for connecting to Spark deploy clusters
val SPARK_REGEX = """spark://(.*)""".r
}
/**
* A class encapsulating how to convert some type `T` from `Writable`. It stores both the `Writable`
* class corresponding to `T` (e.g. `IntWritable` for `Int`) and a function for doing the
* conversion.
* The getter for the writable class takes a `ClassTag[T]` in case this is a generic object
* that doesn't know the type of `T` when it is created. This sounds strange but is necessary to
* support converting subclasses of `Writable` to themselves (`writableWritableConverter()`).
*/
private[spark] class WritableConverter[T](
val writableClass: ClassTag[T] => Class[_ <: Writable],
val convert: Writable => T)
extends Serializable
object WritableConverter {
// Helper objects for converting common types to Writable
private[spark] def simpleWritableConverter[T, W <: Writable: ClassTag](convert: W => T)
: WritableConverter[T] = {
val wClass = classTag[W].runtimeClass.asInstanceOf[Class[W]]
new WritableConverter[T](_ => wClass, x => convert(x.asInstanceOf[W]))
}
// The following implicit functions were in SparkContext before 1.3 and users had to
// `import SparkContext._` to enable them. Now we move them here to make the compiler find
// them automatically. However, we still keep the old functions in SparkContext for backward
// compatibility and forward to the following functions directly.
// The following implicit declarations have been added on top of the very similar ones
// below in order to enable compatibility with Scala 2.12. Scala 2.12 deprecates eta
// expansion of zero-arg methods and thus won't match a no-arg method where it expects
// an implicit that is a function of no args.
implicit val intWritableConverterFn: () => WritableConverter[Int] =
() => simpleWritableConverter[Int, IntWritable](_.get)
implicit val longWritableConverterFn: () => WritableConverter[Long] =
() => simpleWritableConverter[Long, LongWritable](_.get)
implicit val doubleWritableConverterFn: () => WritableConverter[Double] =
() => simpleWritableConverter[Double, DoubleWritable](_.get)
implicit val floatWritableConverterFn: () => WritableConverter[Float] =
() => simpleWritableConverter[Float, FloatWritable](_.get)
implicit val booleanWritableConverterFn: () => WritableConverter[Boolean] =
() => simpleWritableConverter[Boolean, BooleanWritable](_.get)
implicit val bytesWritableConverterFn: () => WritableConverter[Array[Byte]] = {
() => simpleWritableConverter[Array[Byte], BytesWritable] { bw =>
// getBytes method returns array which is longer then data to be returned
Arrays.copyOfRange(bw.getBytes, 0, bw.getLength)
}
}
implicit val stringWritableConverterFn: () => WritableConverter[String] =
() => simpleWritableConverter[String, Text](_.toString)
implicit def writableWritableConverterFn[T <: Writable : ClassTag]: () => WritableConverter[T] =
() => new WritableConverter[T](_.runtimeClass.asInstanceOf[Class[T]], _.asInstanceOf[T])
// These implicits remain included for backwards-compatibility. They fulfill the
// same role as those above.
implicit def intWritableConverter(): WritableConverter[Int] =
simpleWritableConverter[Int, IntWritable](_.get)
implicit def longWritableConverter(): WritableConverter[Long] =
simpleWritableConverter[Long, LongWritable](_.get)
implicit def doubleWritableConverter(): WritableConverter[Double] =
simpleWritableConverter[Double, DoubleWritable](_.get)
implicit def floatWritableConverter(): WritableConverter[Float] =
simpleWritableConverter[Float, FloatWritable](_.get)
implicit def booleanWritableConverter(): WritableConverter[Boolean] =
simpleWritableConverter[Boolean, BooleanWritable](_.get)
implicit def bytesWritableConverter(): WritableConverter[Array[Byte]] = {
simpleWritableConverter[Array[Byte], BytesWritable] { bw =>
// getBytes method returns array which is longer then data to be returned
Arrays.copyOfRange(bw.getBytes, 0, bw.getLength)
}
}
implicit def stringWritableConverter(): WritableConverter[String] =
simpleWritableConverter[String, Text](_.toString)
implicit def writableWritableConverter[T <: Writable](): WritableConverter[T] =
new WritableConverter[T](_.runtimeClass.asInstanceOf[Class[T]], _.asInstanceOf[T])
}
/**
* A class encapsulating how to convert some type `T` to `Writable`. It stores both the `Writable`
* class corresponding to `T` (e.g. `IntWritable` for `Int`) and a function for doing the
* conversion.
* The `Writable` class will be used in `SequenceFileRDDFunctions`.
*/
private[spark] class WritableFactory[T](
val writableClass: ClassTag[T] => Class[_ <: Writable],
val convert: T => Writable) extends Serializable
object WritableFactory {
private[spark] def simpleWritableFactory[T: ClassTag, W <: Writable : ClassTag](convert: T => W)
: WritableFactory[T] = {
val writableClass = implicitly[ClassTag[W]].runtimeClass.asInstanceOf[Class[W]]
new WritableFactory[T](_ => writableClass, convert)
}
implicit def intWritableFactory: WritableFactory[Int] =
simpleWritableFactory(new IntWritable(_))
implicit def longWritableFactory: WritableFactory[Long] =
simpleWritableFactory(new LongWritable(_))
implicit def floatWritableFactory: WritableFactory[Float] =
simpleWritableFactory(new FloatWritable(_))
implicit def doubleWritableFactory: WritableFactory[Double] =
simpleWritableFactory(new DoubleWritable(_))
implicit def booleanWritableFactory: WritableFactory[Boolean] =
simpleWritableFactory(new BooleanWritable(_))
implicit def bytesWritableFactory: WritableFactory[Array[Byte]] =
simpleWritableFactory(new BytesWritable(_))
implicit def stringWritableFactory: WritableFactory[String] =
simpleWritableFactory(new Text(_))
implicit def writableWritableFactory[T <: Writable: ClassTag]: WritableFactory[T] =
simpleWritableFactory(w => w)
}