org.apache.spark.examples.LocalKMeans.scala Maven / Gradle / Ivy
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// scalastyle:off println
package org.apache.spark.examples
import java.util.Random
import scala.collection.mutable.HashMap
import scala.collection.mutable.HashSet
import breeze.linalg.{squaredDistance, DenseVector, Vector}
/**
* K-means clustering.
*
* This is an example implementation for learning how to use Spark. For more conventional use,
* please refer to org.apache.spark.ml.clustering.KMeans.
*/
object LocalKMeans {
val N = 1000
val R = 1000 // Scaling factor
val D = 10
val K = 10
val convergeDist = 0.001
val rand = new Random(42)
def generateData: Array[DenseVector[Double]] = {
def generatePoint(i: Int): DenseVector[Double] = {
DenseVector.fill(D) {rand.nextDouble * R}
}
Array.tabulate(N)(generatePoint)
}
def closestPoint(p: Vector[Double], centers: HashMap[Int, Vector[Double]]): Int = {
var bestIndex = 0
var closest = Double.PositiveInfinity
for (i <- 1 to centers.size) {
val vCurr = centers(i)
val tempDist = squaredDistance(p, vCurr)
if (tempDist < closest) {
closest = tempDist
bestIndex = i
}
}
bestIndex
}
def showWarning(): Unit = {
System.err.println(
"""WARN: This is a naive implementation of KMeans Clustering and is given as an example!
|Please use org.apache.spark.ml.clustering.KMeans
|for more conventional use.
""".stripMargin)
}
def main(args: Array[String]): Unit = {
showWarning()
val data = generateData
val points = new HashSet[Vector[Double]]
val kPoints = new HashMap[Int, Vector[Double]]
var tempDist = 1.0
while (points.size < K) {
points.add(data(rand.nextInt(N)))
}
val iter = points.iterator
for (i <- 1 to points.size) {
kPoints.put(i, iter.next())
}
println(s"Initial centers: $kPoints")
while(tempDist > convergeDist) {
val closest = data.map (p => (closestPoint(p, kPoints), (p, 1)))
val mappings = closest.groupBy[Int] (x => x._1)
val pointStats = mappings.map { pair =>
pair._2.reduceLeft [(Int, (Vector[Double], Int))] {
case ((id1, (p1, c1)), (id2, (p2, c2))) => (id1, (p1 + p2, c1 + c2))
}
}
var newPoints = pointStats.map {mapping =>
(mapping._1, mapping._2._1 * (1.0 / mapping._2._2))}
tempDist = 0.0
for (mapping <- newPoints) {
tempDist += squaredDistance(kPoints(mapping._1), mapping._2)
}
for (newP <- newPoints) {
kPoints.put(newP._1, newP._2)
}
}
println(s"Final centers: $kPoints")
}
}
// scalastyle:on println
© 2015 - 2025 Weber Informatics LLC | Privacy Policy