org.apache.spark.examples.graphx.TriangleCountingExample.scala Maven / Gradle / Ivy
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// scalastyle:off println
package org.apache.spark.examples.graphx
// $example on$
import org.apache.spark.graphx.{GraphLoader, PartitionStrategy}
// $example off$
import org.apache.spark.sql.SparkSession
/**
* A vertex is part of a triangle when it has two adjacent vertices with an edge between them.
* GraphX implements a triangle counting algorithm in the [`TriangleCount` object][TriangleCount]
* that determines the number of triangles passing through each vertex,
* providing a measure of clustering.
* We compute the triangle count of the social network dataset.
*
* Note that `TriangleCount` requires the edges to be in canonical orientation (`srcId < dstId`)
* and the graph to be partitioned using [`Graph.partitionBy`][Graph.partitionBy].
*
* Run with
* {{{
* bin/run-example graphx.TriangleCountingExample
* }}}
*/
object TriangleCountingExample {
def main(args: Array[String]): Unit = {
// Creates a SparkSession.
val spark = SparkSession
.builder
.appName(s"${this.getClass.getSimpleName}")
.getOrCreate()
val sc = spark.sparkContext
// $example on$
// Load the edges in canonical order and partition the graph for triangle count
val graph = GraphLoader.edgeListFile(sc, "data/graphx/followers.txt", true)
.partitionBy(PartitionStrategy.RandomVertexCut)
// Find the triangle count for each vertex
val triCounts = graph.triangleCount().vertices
// Join the triangle counts with the usernames
val users = sc.textFile("data/graphx/users.txt").map { line =>
val fields = line.split(",")
(fields(0).toLong, fields(1))
}
val triCountByUsername = users.join(triCounts).map { case (id, (username, tc)) =>
(username, tc)
}
// Print the result
println(triCountByUsername.collect().mkString("\n"))
// $example off$
spark.stop()
}
}
// scalastyle:on println
© 2015 - 2025 Weber Informatics LLC | Privacy Policy