org.apache.spark.examples.ml.FPGrowthExample.scala Maven / Gradle / Ivy
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.examples.ml
// $example on$
import org.apache.spark.ml.fpm.FPGrowth
// $example off$
import org.apache.spark.sql.SparkSession
/**
* An example demonstrating FP-Growth.
* Run with
* {{{
* bin/run-example ml.FPGrowthExample
* }}}
*/
object FPGrowthExample {
def main(args: Array[String]): Unit = {
val spark = SparkSession
.builder
.appName(s"${this.getClass.getSimpleName}")
.getOrCreate()
import spark.implicits._
// $example on$
val dataset = spark.createDataset(Seq(
"1 2 5",
"1 2 3 5",
"1 2")
).map(t => t.split(" ")).toDF("items")
val fpgrowth = new FPGrowth().setItemsCol("items").setMinSupport(0.5).setMinConfidence(0.6)
val model = fpgrowth.fit(dataset)
// Display frequent itemsets.
model.freqItemsets.show()
// Display generated association rules.
model.associationRules.show()
// transform examines the input items against all the association rules and summarize the
// consequents as prediction
model.transform(dataset).show()
// $example off$
spark.stop()
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy