org.apache.spark.examples.ml.GaussianMixtureExample.scala Maven / Gradle / Ivy
The newest version!
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.examples.ml
// scalastyle:off println
// $example on$
import org.apache.spark.ml.clustering.GaussianMixture
// $example off$
import org.apache.spark.sql.SparkSession
/**
* An example demonstrating Gaussian Mixture Model (GMM).
* Run with
* {{{
* bin/run-example ml.GaussianMixtureExample
* }}}
*/
object GaussianMixtureExample {
def main(args: Array[String]): Unit = {
val spark = SparkSession
.builder
.appName(s"${this.getClass.getSimpleName}")
.getOrCreate()
// $example on$
// Loads data
val dataset = spark.read.format("libsvm").load("data/mllib/sample_kmeans_data.txt")
// Trains Gaussian Mixture Model
val gmm = new GaussianMixture()
.setK(2)
val model = gmm.fit(dataset)
// output parameters of mixture model model
for (i <- 0 until model.getK) {
println(s"Gaussian $i:\nweight=${model.weights(i)}\n" +
s"mu=${model.gaussians(i).mean}\nsigma=\n${model.gaussians(i).cov}\n")
}
// $example off$
spark.stop()
}
}
// scalastyle:on println
© 2015 - 2025 Weber Informatics LLC | Privacy Policy