org.apache.spark.examples.ml.ImputerExample.scala Maven / Gradle / Ivy
The newest version!
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.examples.ml
// $example on$
import org.apache.spark.ml.feature.Imputer
// $example off$
import org.apache.spark.sql.SparkSession
/**
* An example demonstrating Imputer.
* Run with:
* bin/run-example ml.ImputerExample
*/
object ImputerExample {
def main(args: Array[String]): Unit = {
val spark = SparkSession.builder
.appName("ImputerExample")
.getOrCreate()
// $example on$
val df = spark.createDataFrame(Seq(
(1.0, Double.NaN),
(2.0, Double.NaN),
(Double.NaN, 3.0),
(4.0, 4.0),
(5.0, 5.0)
)).toDF("a", "b")
val imputer = new Imputer()
.setInputCols(Array("a", "b"))
.setOutputCols(Array("out_a", "out_b"))
val model = imputer.fit(df)
model.transform(df).show()
// $example off$
spark.stop()
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy