All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.spark.examples.ml.JavaBucketizerExample Maven / Gradle / Ivy

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.examples.ml;

import org.apache.spark.sql.SparkSession;

// $example on$
import java.util.Arrays;
import java.util.List;

import org.apache.spark.ml.feature.Bucketizer;
import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.RowFactory;
import org.apache.spark.sql.types.DataTypes;
import org.apache.spark.sql.types.Metadata;
import org.apache.spark.sql.types.StructField;
import org.apache.spark.sql.types.StructType;
// $example off$

/**
 * An example for Bucketizer.
 * Run with
 * 
 * bin/run-example ml.JavaBucketizerExample
 * 
*/ public class JavaBucketizerExample { public static void main(String[] args) { SparkSession spark = SparkSession .builder() .appName("JavaBucketizerExample") .getOrCreate(); // $example on$ double[] splits = {Double.NEGATIVE_INFINITY, -0.5, 0.0, 0.5, Double.POSITIVE_INFINITY}; List data = Arrays.asList( RowFactory.create(-999.9), RowFactory.create(-0.5), RowFactory.create(-0.3), RowFactory.create(0.0), RowFactory.create(0.2), RowFactory.create(999.9) ); StructType schema = new StructType(new StructField[]{ new StructField("features", DataTypes.DoubleType, false, Metadata.empty()) }); Dataset dataFrame = spark.createDataFrame(data, schema); Bucketizer bucketizer = new Bucketizer() .setInputCol("features") .setOutputCol("bucketedFeatures") .setSplits(splits); // Transform original data into its bucket index. Dataset bucketedData = bucketizer.transform(dataFrame); System.out.println("Bucketizer output with " + (bucketizer.getSplits().length-1) + " buckets"); bucketedData.show(); // $example off$ // $example on$ // Bucketize multiple columns at one pass. double[][] splitsArray = { {Double.NEGATIVE_INFINITY, -0.5, 0.0, 0.5, Double.POSITIVE_INFINITY}, {Double.NEGATIVE_INFINITY, -0.3, 0.0, 0.3, Double.POSITIVE_INFINITY} }; List data2 = Arrays.asList( RowFactory.create(-999.9, -999.9), RowFactory.create(-0.5, -0.2), RowFactory.create(-0.3, -0.1), RowFactory.create(0.0, 0.0), RowFactory.create(0.2, 0.4), RowFactory.create(999.9, 999.9) ); StructType schema2 = new StructType(new StructField[]{ new StructField("features1", DataTypes.DoubleType, false, Metadata.empty()), new StructField("features2", DataTypes.DoubleType, false, Metadata.empty()) }); Dataset dataFrame2 = spark.createDataFrame(data2, schema2); Bucketizer bucketizer2 = new Bucketizer() .setInputCols(new String[] {"features1", "features2"}) .setOutputCols(new String[] {"bucketedFeatures1", "bucketedFeatures2"}) .setSplitsArray(splitsArray); // Transform original data into its bucket index. Dataset bucketedData2 = bucketizer2.transform(dataFrame2); System.out.println("Bucketizer output with [" + (bucketizer2.getSplitsArray()[0].length-1) + ", " + (bucketizer2.getSplitsArray()[1].length-1) + "] buckets for each input column"); bucketedData2.show(); // $example off$ spark.stop(); } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy