All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.spark.examples.ml.JavaFPGrowthExample Maven / Gradle / Ivy

The newest version!
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.examples.ml;

// $example on$
import java.util.Arrays;
import java.util.List;

import org.apache.spark.ml.fpm.FPGrowth;
import org.apache.spark.ml.fpm.FPGrowthModel;
import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.RowFactory;
import org.apache.spark.sql.SparkSession;
import org.apache.spark.sql.types.*;
// $example off$

/**
 * An example demonstrating FPGrowth.
 * Run with
 * 
 * bin/run-example ml.JavaFPGrowthExample
 * 
*/ public class JavaFPGrowthExample { public static void main(String[] args) { SparkSession spark = SparkSession .builder() .appName("JavaFPGrowthExample") .getOrCreate(); // $example on$ List data = Arrays.asList( RowFactory.create(Arrays.asList("1 2 5".split(" "))), RowFactory.create(Arrays.asList("1 2 3 5".split(" "))), RowFactory.create(Arrays.asList("1 2".split(" "))) ); StructType schema = new StructType(new StructField[]{ new StructField( "items", new ArrayType(DataTypes.StringType, true), false, Metadata.empty()) }); Dataset itemsDF = spark.createDataFrame(data, schema); FPGrowthModel model = new FPGrowth() .setItemsCol("items") .setMinSupport(0.5) .setMinConfidence(0.6) .fit(itemsDF); // Display frequent itemsets. model.freqItemsets().show(); // Display generated association rules. model.associationRules().show(); // transform examines the input items against all the association rules and summarize the // consequents as prediction model.transform(itemsDF).show(); // $example off$ spark.stop(); } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy