All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.spark.examples.ml.JavaIsotonicRegressionExample Maven / Gradle / Ivy

The newest version!
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.spark.examples.ml;

// $example on$

import org.apache.spark.ml.regression.IsotonicRegression;
import org.apache.spark.ml.regression.IsotonicRegressionModel;
import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Row;
// $example off$
import org.apache.spark.sql.SparkSession;

/**
 * An example demonstrating IsotonicRegression.
 * Run with
 * 
 * bin/run-example ml.JavaIsotonicRegressionExample
 * 
*/ public class JavaIsotonicRegressionExample { public static void main(String[] args) { // Create a SparkSession. SparkSession spark = SparkSession .builder() .appName("JavaIsotonicRegressionExample") .getOrCreate(); // $example on$ // Loads data. Dataset dataset = spark.read().format("libsvm") .load("data/mllib/sample_isotonic_regression_libsvm_data.txt"); // Trains an isotonic regression model. IsotonicRegression ir = new IsotonicRegression(); IsotonicRegressionModel model = ir.fit(dataset); System.out.println("Boundaries in increasing order: " + model.boundaries() + "\n"); System.out.println("Predictions associated with the boundaries: " + model.predictions() + "\n"); // Makes predictions. model.transform(dataset).show(); // $example off$ spark.stop(); } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy