All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.spark.examples.ml.JavaLDAExample Maven / Gradle / Ivy

The newest version!
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.examples.ml;
// $example on$
import org.apache.spark.ml.clustering.LDA;
import org.apache.spark.ml.clustering.LDAModel;
import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.SparkSession;
// $example off$

/**
 * An example demonstrating LDA.
 * Run with
 * 
 * bin/run-example ml.JavaLDAExample
 * 
*/ public class JavaLDAExample { public static void main(String[] args) { // Creates a SparkSession SparkSession spark = SparkSession .builder() .appName("JavaLDAExample") .getOrCreate(); // $example on$ // Loads data. Dataset dataset = spark.read().format("libsvm") .load("data/mllib/sample_lda_libsvm_data.txt"); // Trains a LDA model. LDA lda = new LDA().setK(10).setMaxIter(10); LDAModel model = lda.fit(dataset); double ll = model.logLikelihood(dataset); double lp = model.logPerplexity(dataset); System.out.println("The lower bound on the log likelihood of the entire corpus: " + ll); System.out.println("The upper bound on perplexity: " + lp); // Describe topics. Dataset topics = model.describeTopics(3); System.out.println("The topics described by their top-weighted terms:"); topics.show(false); // Shows the result. Dataset transformed = model.transform(dataset); transformed.show(false); // $example off$ spark.stop(); } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy