org.apache.spark.examples.ml.JavaLDAExample Maven / Gradle / Ivy
The newest version!
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.examples.ml;
// $example on$
import org.apache.spark.ml.clustering.LDA;
import org.apache.spark.ml.clustering.LDAModel;
import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.SparkSession;
// $example off$
/**
* An example demonstrating LDA.
* Run with
*
* bin/run-example ml.JavaLDAExample
*
*/
public class JavaLDAExample {
public static void main(String[] args) {
// Creates a SparkSession
SparkSession spark = SparkSession
.builder()
.appName("JavaLDAExample")
.getOrCreate();
// $example on$
// Loads data.
Dataset dataset = spark.read().format("libsvm")
.load("data/mllib/sample_lda_libsvm_data.txt");
// Trains a LDA model.
LDA lda = new LDA().setK(10).setMaxIter(10);
LDAModel model = lda.fit(dataset);
double ll = model.logLikelihood(dataset);
double lp = model.logPerplexity(dataset);
System.out.println("The lower bound on the log likelihood of the entire corpus: " + ll);
System.out.println("The upper bound on perplexity: " + lp);
// Describe topics.
Dataset topics = model.describeTopics(3);
System.out.println("The topics described by their top-weighted terms:");
topics.show(false);
// Shows the result.
Dataset transformed = model.transform(dataset);
transformed.show(false);
// $example off$
spark.stop();
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy