org.apache.spark.examples.ml.JavaModelSelectionViaTrainValidationSplitExample Maven / Gradle / Ivy
The newest version!
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.examples.ml;
// $example on$
import org.apache.spark.ml.evaluation.RegressionEvaluator;
import org.apache.spark.ml.param.ParamMap;
import org.apache.spark.ml.regression.LinearRegression;
import org.apache.spark.ml.tuning.ParamGridBuilder;
import org.apache.spark.ml.tuning.TrainValidationSplit;
import org.apache.spark.ml.tuning.TrainValidationSplitModel;
import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Row;
// $example off$
import org.apache.spark.sql.SparkSession;
/**
* Java example demonstrating model selection using TrainValidationSplit.
*
* Run with
* {{{
* bin/run-example ml.JavaModelSelectionViaTrainValidationSplitExample
* }}}
*/
public class JavaModelSelectionViaTrainValidationSplitExample {
public static void main(String[] args) {
SparkSession spark = SparkSession
.builder()
.appName("JavaModelSelectionViaTrainValidationSplitExample")
.getOrCreate();
// $example on$
Dataset data = spark.read().format("libsvm")
.load("data/mllib/sample_linear_regression_data.txt");
// Prepare training and test data.
Dataset[] splits = data.randomSplit(new double[] {0.9, 0.1}, 12345);
Dataset training = splits[0];
Dataset test = splits[1];
LinearRegression lr = new LinearRegression();
// We use a ParamGridBuilder to construct a grid of parameters to search over.
// TrainValidationSplit will try all combinations of values and determine best model using
// the evaluator.
ParamMap[] paramGrid = new ParamGridBuilder()
.addGrid(lr.regParam(), new double[] {0.1, 0.01})
.addGrid(lr.fitIntercept())
.addGrid(lr.elasticNetParam(), new double[] {0.0, 0.5, 1.0})
.build();
// In this case the estimator is simply the linear regression.
// A TrainValidationSplit requires an Estimator, a set of Estimator ParamMaps, and an Evaluator.
TrainValidationSplit trainValidationSplit = new TrainValidationSplit()
.setEstimator(lr)
.setEvaluator(new RegressionEvaluator())
.setEstimatorParamMaps(paramGrid)
.setTrainRatio(0.8) // 80% for training and the remaining 20% for validation
.setParallelism(2); // Evaluate up to 2 parameter settings in parallel
// Run train validation split, and choose the best set of parameters.
TrainValidationSplitModel model = trainValidationSplit.fit(training);
// Make predictions on test data. model is the model with combination of parameters
// that performed best.
model.transform(test)
.select("features", "label", "prediction")
.show();
// $example off$
spark.stop();
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy