org.apache.spark.examples.ml.JavaMultilayerPerceptronClassifierExample Maven / Gradle / Ivy
The newest version!
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.examples.ml;
// $example on$
import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.SparkSession;
import org.apache.spark.ml.classification.MultilayerPerceptronClassificationModel;
import org.apache.spark.ml.classification.MultilayerPerceptronClassifier;
import org.apache.spark.ml.evaluation.MulticlassClassificationEvaluator;
// $example off$
/**
* An example for Multilayer Perceptron Classification.
*/
public class JavaMultilayerPerceptronClassifierExample {
public static void main(String[] args) {
SparkSession spark = SparkSession
.builder()
.appName("JavaMultilayerPerceptronClassifierExample")
.getOrCreate();
// $example on$
// Load training data
String path = "data/mllib/sample_multiclass_classification_data.txt";
Dataset dataFrame = spark.read().format("libsvm").load(path);
// Split the data into train and test
Dataset[] splits = dataFrame.randomSplit(new double[]{0.6, 0.4}, 1234L);
Dataset train = splits[0];
Dataset test = splits[1];
// specify layers for the neural network:
// input layer of size 4 (features), two intermediate of size 5 and 4
// and output of size 3 (classes)
int[] layers = new int[] {4, 5, 4, 3};
// create the trainer and set its parameters
MultilayerPerceptronClassifier trainer = new MultilayerPerceptronClassifier()
.setLayers(layers)
.setBlockSize(128)
.setSeed(1234L)
.setMaxIter(100);
// train the model
MultilayerPerceptronClassificationModel model = trainer.fit(train);
// compute accuracy on the test set
Dataset result = model.transform(test);
Dataset predictionAndLabels = result.select("prediction", "label");
MulticlassClassificationEvaluator evaluator = new MulticlassClassificationEvaluator()
.setMetricName("accuracy");
System.out.println("Test set accuracy = " + evaluator.evaluate(predictionAndLabels));
// $example off$
spark.stop();
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy