org.apache.spark.examples.ml.JavaSummarizerExample Maven / Gradle / Ivy
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.examples.ml;
import org.apache.spark.sql.*;
// $example on$
import java.util.Arrays;
import java.util.List;
import org.apache.spark.ml.linalg.Vector;
import org.apache.spark.ml.linalg.Vectors;
import org.apache.spark.ml.linalg.VectorUDT;
import org.apache.spark.ml.stat.Summarizer;
import org.apache.spark.sql.types.DataTypes;
import org.apache.spark.sql.types.Metadata;
import org.apache.spark.sql.types.StructField;
import org.apache.spark.sql.types.StructType;
// $example off$
public class JavaSummarizerExample {
public static void main(String[] args) {
SparkSession spark = SparkSession
.builder()
.appName("JavaSummarizerExample")
.getOrCreate();
// $example on$
List data = Arrays.asList(
RowFactory.create(Vectors.dense(2.0, 3.0, 5.0), 1.0),
RowFactory.create(Vectors.dense(4.0, 6.0, 7.0), 2.0)
);
StructType schema = new StructType(new StructField[]{
new StructField("features", new VectorUDT(), false, Metadata.empty()),
new StructField("weight", DataTypes.DoubleType, false, Metadata.empty())
});
Dataset df = spark.createDataFrame(data, schema);
Row result1 = df.select(Summarizer.metrics("mean", "variance")
.summary(new Column("features"), new Column("weight")).as("summary"))
.select("summary.mean", "summary.variance").first();
System.out.println("with weight: mean = " + result1.getAs(0).toString() +
", variance = " + result1.getAs(1).toString());
Row result2 = df.select(
Summarizer.mean(new Column("features")),
Summarizer.variance(new Column("features"))
).first();
System.out.println("without weight: mean = " + result2.getAs(0).toString() +
", variance = " + result2.getAs(1).toString());
// $example off$
spark.stop();
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy