org.apache.spark.examples.ml.JavaTokenizerExample Maven / Gradle / Ivy
The newest version!
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.examples.ml;
import org.apache.spark.sql.SparkSession;
// $example on$
import java.util.Arrays;
import java.util.List;
import scala.collection.mutable.WrappedArray;
import org.apache.spark.ml.feature.RegexTokenizer;
import org.apache.spark.ml.feature.Tokenizer;
import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.RowFactory;
import org.apache.spark.sql.types.DataTypes;
import org.apache.spark.sql.types.Metadata;
import org.apache.spark.sql.types.StructField;
import org.apache.spark.sql.types.StructType;
// col("...") is preferable to df.col("...")
import static org.apache.spark.sql.functions.callUDF;
import static org.apache.spark.sql.functions.col;
// $example off$
public class JavaTokenizerExample {
public static void main(String[] args) {
SparkSession spark = SparkSession
.builder()
.appName("JavaTokenizerExample")
.getOrCreate();
// $example on$
List data = Arrays.asList(
RowFactory.create(0, "Hi I heard about Spark"),
RowFactory.create(1, "I wish Java could use case classes"),
RowFactory.create(2, "Logistic,regression,models,are,neat")
);
StructType schema = new StructType(new StructField[]{
new StructField("id", DataTypes.IntegerType, false, Metadata.empty()),
new StructField("sentence", DataTypes.StringType, false, Metadata.empty())
});
Dataset sentenceDataFrame = spark.createDataFrame(data, schema);
Tokenizer tokenizer = new Tokenizer().setInputCol("sentence").setOutputCol("words");
RegexTokenizer regexTokenizer = new RegexTokenizer()
.setInputCol("sentence")
.setOutputCol("words")
.setPattern("\\W"); // alternatively .setPattern("\\w+").setGaps(false);
spark.udf().register(
"countTokens", (WrappedArray> words) -> words.size(), DataTypes.IntegerType);
Dataset tokenized = tokenizer.transform(sentenceDataFrame);
tokenized.select("sentence", "words")
.withColumn("tokens", callUDF("countTokens", col("words")))
.show(false);
Dataset regexTokenized = regexTokenizer.transform(sentenceDataFrame);
regexTokenized.select("sentence", "words")
.withColumn("tokens", callUDF("countTokens", col("words")))
.show(false);
// $example off$
spark.stop();
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy