org.apache.spark.examples.ml.LDAExample.scala Maven / Gradle / Ivy
The newest version!
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.examples.ml
// scalastyle:off println
// $example on$
import org.apache.spark.ml.clustering.LDA
// $example off$
import org.apache.spark.sql.SparkSession
/**
* An example demonstrating LDA.
* Run with
* {{{
* bin/run-example ml.LDAExample
* }}}
*/
object LDAExample {
def main(args: Array[String]): Unit = {
// Creates a SparkSession
val spark = SparkSession
.builder
.appName(s"${this.getClass.getSimpleName}")
.getOrCreate()
// $example on$
// Loads data.
val dataset = spark.read.format("libsvm")
.load("data/mllib/sample_lda_libsvm_data.txt")
// Trains a LDA model.
val lda = new LDA().setK(10).setMaxIter(10)
val model = lda.fit(dataset)
val ll = model.logLikelihood(dataset)
val lp = model.logPerplexity(dataset)
println(s"The lower bound on the log likelihood of the entire corpus: $ll")
println(s"The upper bound on perplexity: $lp")
// Describe topics.
val topics = model.describeTopics(3)
println("The topics described by their top-weighted terms:")
topics.show(false)
// Shows the result.
val transformed = model.transform(dataset)
transformed.show(false)
// $example off$
spark.stop()
}
}
// scalastyle:on println
© 2015 - 2025 Weber Informatics LLC | Privacy Policy