org.apache.spark.examples.ml.MulticlassLogisticRegressionWithElasticNetExample.scala Maven / Gradle / Ivy
The newest version!
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// scalastyle:off println
package org.apache.spark.examples.ml
// $example on$
import org.apache.spark.ml.classification.LogisticRegression
// $example off$
import org.apache.spark.sql.SparkSession
object MulticlassLogisticRegressionWithElasticNetExample {
def main(args: Array[String]): Unit = {
val spark = SparkSession
.builder
.appName("MulticlassLogisticRegressionWithElasticNetExample")
.getOrCreate()
// $example on$
// Load training data
val training = spark
.read
.format("libsvm")
.load("data/mllib/sample_multiclass_classification_data.txt")
val lr = new LogisticRegression()
.setMaxIter(10)
.setRegParam(0.3)
.setElasticNetParam(0.8)
// Fit the model
val lrModel = lr.fit(training)
// Print the coefficients and intercept for multinomial logistic regression
println(s"Coefficients: \n${lrModel.coefficientMatrix}")
println(s"Intercepts: \n${lrModel.interceptVector}")
val trainingSummary = lrModel.summary
// Obtain the objective per iteration
val objectiveHistory = trainingSummary.objectiveHistory
println("objectiveHistory:")
objectiveHistory.foreach(println)
// for multiclass, we can inspect metrics on a per-label basis
println("False positive rate by label:")
trainingSummary.falsePositiveRateByLabel.zipWithIndex.foreach { case (rate, label) =>
println(s"label $label: $rate")
}
println("True positive rate by label:")
trainingSummary.truePositiveRateByLabel.zipWithIndex.foreach { case (rate, label) =>
println(s"label $label: $rate")
}
println("Precision by label:")
trainingSummary.precisionByLabel.zipWithIndex.foreach { case (prec, label) =>
println(s"label $label: $prec")
}
println("Recall by label:")
trainingSummary.recallByLabel.zipWithIndex.foreach { case (rec, label) =>
println(s"label $label: $rec")
}
println("F-measure by label:")
trainingSummary.fMeasureByLabel.zipWithIndex.foreach { case (f, label) =>
println(s"label $label: $f")
}
val accuracy = trainingSummary.accuracy
val falsePositiveRate = trainingSummary.weightedFalsePositiveRate
val truePositiveRate = trainingSummary.weightedTruePositiveRate
val fMeasure = trainingSummary.weightedFMeasure
val precision = trainingSummary.weightedPrecision
val recall = trainingSummary.weightedRecall
println(s"Accuracy: $accuracy\nFPR: $falsePositiveRate\nTPR: $truePositiveRate\n" +
s"F-measure: $fMeasure\nPrecision: $precision\nRecall: $recall")
// $example off$
spark.stop()
}
}
// scalastyle:on println
© 2015 - 2025 Weber Informatics LLC | Privacy Policy