org.apache.spark.examples.ml.PowerIterationClusteringExample.scala Maven / Gradle / Ivy
The newest version!
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// scalastyle:off println
package org.apache.spark.examples.ml
// $example on$
import org.apache.spark.ml.clustering.PowerIterationClustering
// $example off$
import org.apache.spark.sql.SparkSession
object PowerIterationClusteringExample {
def main(args: Array[String]): Unit = {
val spark = SparkSession
.builder
.appName(s"${this.getClass.getSimpleName}")
.getOrCreate()
// $example on$
val dataset = spark.createDataFrame(Seq(
(0L, 1L, 1.0),
(0L, 2L, 1.0),
(1L, 2L, 1.0),
(3L, 4L, 1.0),
(4L, 0L, 0.1)
)).toDF("src", "dst", "weight")
val model = new PowerIterationClustering().
setK(2).
setMaxIter(20).
setInitMode("degree").
setWeightCol("weight")
val prediction = model.assignClusters(dataset).select("id", "cluster")
// Shows the cluster assignment
prediction.show(false)
// $example off$
spark.stop()
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy