org.apache.spark.examples.mllib.BinaryClassification.scala Maven / Gradle / Ivy
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// scalastyle:off println
package org.apache.spark.examples.mllib
import org.apache.log4j.{Level, Logger}
import scopt.OptionParser
import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.mllib.classification.{LogisticRegressionWithLBFGS, SVMWithSGD}
import org.apache.spark.mllib.evaluation.BinaryClassificationMetrics
import org.apache.spark.mllib.optimization.{L1Updater, SquaredL2Updater}
import org.apache.spark.mllib.util.MLUtils
/**
* An example app for binary classification. Run with
* {{{
* bin/run-example org.apache.spark.examples.mllib.BinaryClassification
* }}}
* A synthetic dataset is located at `data/mllib/sample_binary_classification_data.txt`.
* If you use it as a template to create your own app, please use `spark-submit` to submit your app.
*/
object BinaryClassification {
object Algorithm extends Enumeration {
type Algorithm = Value
val SVM, LR = Value
}
object RegType extends Enumeration {
type RegType = Value
val L1, L2 = Value
}
import Algorithm._
import RegType._
case class Params(
input: String = null,
numIterations: Int = 100,
stepSize: Double = 1.0,
algorithm: Algorithm = LR,
regType: RegType = L2,
regParam: Double = 0.01) extends AbstractParams[Params]
def main(args: Array[String]): Unit = {
val defaultParams = Params()
val parser = new OptionParser[Params]("BinaryClassification") {
head("BinaryClassification: an example app for binary classification.")
opt[Int]("numIterations")
.text("number of iterations")
.action((x, c) => c.copy(numIterations = x))
opt[Double]("stepSize")
.text("initial step size (ignored by logistic regression), " +
s"default: ${defaultParams.stepSize}")
.action((x, c) => c.copy(stepSize = x))
opt[String]("algorithm")
.text(s"algorithm (${Algorithm.values.mkString(",")}), " +
s"default: ${defaultParams.algorithm}")
.action((x, c) => c.copy(algorithm = Algorithm.withName(x)))
opt[String]("regType")
.text(s"regularization type (${RegType.values.mkString(",")}), " +
s"default: ${defaultParams.regType}")
.action((x, c) => c.copy(regType = RegType.withName(x)))
opt[Double]("regParam")
.text(s"regularization parameter, default: ${defaultParams.regParam}")
arg[String]("")
.required()
.text("input paths to labeled examples in LIBSVM format")
.action((x, c) => c.copy(input = x))
note(
"""
|For example, the following command runs this app on a synthetic dataset:
|
| bin/spark-submit --class org.apache.spark.examples.mllib.BinaryClassification \
| examples/target/scala-*/spark-examples-*.jar \
| --algorithm LR --regType L2 --regParam 1.0 \
| data/mllib/sample_binary_classification_data.txt
""".stripMargin)
}
parser.parse(args, defaultParams) match {
case Some(params) => run(params)
case _ => sys.exit(1)
}
}
def run(params: Params): Unit = {
val conf = new SparkConf().setAppName(s"BinaryClassification with $params")
val sc = new SparkContext(conf)
Logger.getRootLogger.setLevel(Level.WARN)
val examples = MLUtils.loadLibSVMFile(sc, params.input).cache()
val splits = examples.randomSplit(Array(0.8, 0.2))
val training = splits(0).cache()
val test = splits(1).cache()
val numTraining = training.count()
val numTest = test.count()
println(s"Training: $numTraining, test: $numTest.")
examples.unpersist()
val updater = params.regType match {
case L1 => new L1Updater()
case L2 => new SquaredL2Updater()
}
val model = params.algorithm match {
case LR =>
val algorithm = new LogisticRegressionWithLBFGS()
algorithm.optimizer
.setNumIterations(params.numIterations)
.setUpdater(updater)
.setRegParam(params.regParam)
algorithm.run(training).clearThreshold()
case SVM =>
val algorithm = new SVMWithSGD()
algorithm.optimizer
.setNumIterations(params.numIterations)
.setStepSize(params.stepSize)
.setUpdater(updater)
.setRegParam(params.regParam)
algorithm.run(training).clearThreshold()
}
val prediction = model.predict(test.map(_.features))
val predictionAndLabel = prediction.zip(test.map(_.label))
val metrics = new BinaryClassificationMetrics(predictionAndLabel)
println(s"Test areaUnderPR = ${metrics.areaUnderPR()}.")
println(s"Test areaUnderROC = ${metrics.areaUnderROC()}.")
sc.stop()
}
}
// scalastyle:on println
© 2015 - 2025 Weber Informatics LLC | Privacy Policy