org.apache.spark.examples.mllib.DecisionTreeRegressionExample.scala Maven / Gradle / Ivy
The newest version!
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// scalastyle:off println
package org.apache.spark.examples.mllib
import org.apache.spark.{SparkConf, SparkContext}
// $example on$
import org.apache.spark.mllib.tree.DecisionTree
import org.apache.spark.mllib.tree.model.DecisionTreeModel
import org.apache.spark.mllib.util.MLUtils
// $example off$
object DecisionTreeRegressionExample {
def main(args: Array[String]): Unit = {
val conf = new SparkConf().setAppName("DecisionTreeRegressionExample")
val sc = new SparkContext(conf)
// $example on$
// Load and parse the data file.
val data = MLUtils.loadLibSVMFile(sc, "data/mllib/sample_libsvm_data.txt")
// Split the data into training and test sets (30% held out for testing)
val splits = data.randomSplit(Array(0.7, 0.3))
val (trainingData, testData) = (splits(0), splits(1))
// Train a DecisionTree model.
// Empty categoricalFeaturesInfo indicates all features are continuous.
val categoricalFeaturesInfo = Map[Int, Int]()
val impurity = "variance"
val maxDepth = 5
val maxBins = 32
val model = DecisionTree.trainRegressor(trainingData, categoricalFeaturesInfo, impurity,
maxDepth, maxBins)
// Evaluate model on test instances and compute test error
val labelsAndPredictions = testData.map { point =>
val prediction = model.predict(point.features)
(point.label, prediction)
}
val testMSE = labelsAndPredictions.map{ case (v, p) => math.pow(v - p, 2) }.mean()
println(s"Test Mean Squared Error = $testMSE")
println(s"Learned regression tree model:\n ${model.toDebugString}")
// Save and load model
model.save(sc, "target/tmp/myDecisionTreeRegressionModel")
val sameModel = DecisionTreeModel.load(sc, "target/tmp/myDecisionTreeRegressionModel")
// $example off$
sc.stop()
}
}
// scalastyle:on println
© 2015 - 2025 Weber Informatics LLC | Privacy Policy