org.apache.spark.examples.mllib.JavaMulticlassClassificationMetricsExample Maven / Gradle / Ivy
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.examples.mllib;
// $example on$
import scala.Tuple2;
import org.apache.spark.api.java.*;
import org.apache.spark.mllib.classification.LogisticRegressionModel;
import org.apache.spark.mllib.classification.LogisticRegressionWithLBFGS;
import org.apache.spark.mllib.evaluation.MulticlassMetrics;
import org.apache.spark.mllib.regression.LabeledPoint;
import org.apache.spark.mllib.util.MLUtils;
import org.apache.spark.mllib.linalg.Matrix;
// $example off$
import org.apache.spark.SparkConf;
import org.apache.spark.SparkContext;
public class JavaMulticlassClassificationMetricsExample {
public static void main(String[] args) {
SparkConf conf = new SparkConf().setAppName("Multi class Classification Metrics Example");
SparkContext sc = new SparkContext(conf);
// $example on$
String path = "data/mllib/sample_multiclass_classification_data.txt";
JavaRDD data = MLUtils.loadLibSVMFile(sc, path).toJavaRDD();
// Split initial RDD into two... [60% training data, 40% testing data].
JavaRDD[] splits = data.randomSplit(new double[]{0.6, 0.4}, 11L);
JavaRDD training = splits[0].cache();
JavaRDD test = splits[1];
// Run training algorithm to build the model.
LogisticRegressionModel model = new LogisticRegressionWithLBFGS()
.setNumClasses(3)
.run(training.rdd());
// Compute raw scores on the test set.
JavaPairRDD
© 2015 - 2025 Weber Informatics LLC | Privacy Policy