org.apache.spark.examples.mllib.JavaPCAExample Maven / Gradle / Ivy
The newest version!
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.examples.mllib;
// $example on$
import java.util.Arrays;
import java.util.List;
// $example off$
import org.apache.spark.SparkConf;
import org.apache.spark.SparkContext;
// $example on$
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.mllib.linalg.Matrix;
import org.apache.spark.mllib.linalg.Vector;
import org.apache.spark.mllib.linalg.Vectors;
import org.apache.spark.mllib.linalg.distributed.RowMatrix;
// $example off$
/**
* Example for compute principal components on a 'RowMatrix'.
*/
public class JavaPCAExample {
public static void main(String[] args) {
SparkConf conf = new SparkConf().setAppName("PCA Example");
SparkContext sc = new SparkContext(conf);
JavaSparkContext jsc = JavaSparkContext.fromSparkContext(sc);
// $example on$
List data = Arrays.asList(
Vectors.sparse(5, new int[] {1, 3}, new double[] {1.0, 7.0}),
Vectors.dense(2.0, 0.0, 3.0, 4.0, 5.0),
Vectors.dense(4.0, 0.0, 0.0, 6.0, 7.0)
);
JavaRDD rows = jsc.parallelize(data);
// Create a RowMatrix from JavaRDD.
RowMatrix mat = new RowMatrix(rows.rdd());
// Compute the top 4 principal components.
// Principal components are stored in a local dense matrix.
Matrix pc = mat.computePrincipalComponents(4);
// Project the rows to the linear space spanned by the top 4 principal components.
RowMatrix projected = mat.multiply(pc);
// $example off$
Vector[] collectPartitions = (Vector[])projected.rows().collect();
System.out.println("Projected vector of principal component:");
for (Vector vector : collectPartitions) {
System.out.println("\t" + vector);
}
jsc.stop();
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy