All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.spark.examples.mllib.JavaRandomForestRegressionExample Maven / Gradle / Ivy

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.examples.mllib;

// $example on$
import java.util.HashMap;
import java.util.Map;

import scala.Tuple2;

import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.mllib.regression.LabeledPoint;
import org.apache.spark.mllib.tree.RandomForest;
import org.apache.spark.mllib.tree.model.RandomForestModel;
import org.apache.spark.mllib.util.MLUtils;
import org.apache.spark.SparkConf;
// $example off$

public class JavaRandomForestRegressionExample {
  public static void main(String[] args) {
    // $example on$
    SparkConf sparkConf = new SparkConf().setAppName("JavaRandomForestRegressionExample");
    JavaSparkContext jsc = new JavaSparkContext(sparkConf);
    // Load and parse the data file.
    String datapath = "data/mllib/sample_libsvm_data.txt";
    JavaRDD data = MLUtils.loadLibSVMFile(jsc.sc(), datapath).toJavaRDD();
    // Split the data into training and test sets (30% held out for testing)
    JavaRDD[] splits = data.randomSplit(new double[]{0.7, 0.3});
    JavaRDD trainingData = splits[0];
    JavaRDD testData = splits[1];

    // Set parameters.
    // Empty categoricalFeaturesInfo indicates all features are continuous.
    Map categoricalFeaturesInfo = new HashMap<>();
    int numTrees = 3; // Use more in practice.
    String featureSubsetStrategy = "auto"; // Let the algorithm choose.
    String impurity = "variance";
    int maxDepth = 4;
    int maxBins = 32;
    int seed = 12345;
    // Train a RandomForest model.
    RandomForestModel model = RandomForest.trainRegressor(trainingData,
      categoricalFeaturesInfo, numTrees, featureSubsetStrategy, impurity, maxDepth, maxBins, seed);

    // Evaluate model on test instances and compute test error
    JavaPairRDD predictionAndLabel =
      testData.mapToPair(p -> new Tuple2<>(model.predict(p.features()), p.label()));
    double testMSE = predictionAndLabel.mapToDouble(pl -> {
      double diff = pl._1() - pl._2();
      return diff * diff;
    }).mean();
    System.out.println("Test Mean Squared Error: " + testMSE);
    System.out.println("Learned regression forest model:\n" + model.toDebugString());

    // Save and load model
    model.save(jsc.sc(), "target/tmp/myRandomForestRegressionModel");
    RandomForestModel sameModel = RandomForestModel.load(jsc.sc(),
      "target/tmp/myRandomForestRegressionModel");
    // $example off$

    jsc.stop();
  }
}




© 2015 - 2025 Weber Informatics LLC | Privacy Policy