All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.spark.examples.mllib.KernelDensityEstimationExample.scala Maven / Gradle / Ivy

The newest version!
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

// scalastyle:off println
package org.apache.spark.examples.mllib

import org.apache.spark.{SparkConf, SparkContext}
// $example on$
import org.apache.spark.mllib.stat.KernelDensity
import org.apache.spark.rdd.RDD
// $example off$

object KernelDensityEstimationExample {

  def main(args: Array[String]): Unit = {

    val conf = new SparkConf().setAppName("KernelDensityEstimationExample")
    val sc = new SparkContext(conf)

    // $example on$
    // an RDD of sample data
    val data: RDD[Double] = sc.parallelize(Seq(1, 1, 1, 2, 3, 4, 5, 5, 6, 7, 8, 9, 9))

    // Construct the density estimator with the sample data and a standard deviation
    // for the Gaussian kernels
    val kd = new KernelDensity()
      .setSample(data)
      .setBandwidth(3.0)

    // Find density estimates for the given values
    val densities = kd.estimate(Array(-1.0, 2.0, 5.0))
    // $example off$

    densities.foreach(println)

    sc.stop()
  }
}
// scalastyle:on println





© 2015 - 2025 Weber Informatics LLC | Privacy Policy