org.apache.spark.examples.mllib.KernelDensityEstimationExample.scala Maven / Gradle / Ivy
The newest version!
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// scalastyle:off println
package org.apache.spark.examples.mllib
import org.apache.spark.{SparkConf, SparkContext}
// $example on$
import org.apache.spark.mllib.stat.KernelDensity
import org.apache.spark.rdd.RDD
// $example off$
object KernelDensityEstimationExample {
def main(args: Array[String]): Unit = {
val conf = new SparkConf().setAppName("KernelDensityEstimationExample")
val sc = new SparkContext(conf)
// $example on$
// an RDD of sample data
val data: RDD[Double] = sc.parallelize(Seq(1, 1, 1, 2, 3, 4, 5, 5, 6, 7, 8, 9, 9))
// Construct the density estimator with the sample data and a standard deviation
// for the Gaussian kernels
val kd = new KernelDensity()
.setSample(data)
.setBandwidth(3.0)
// Find density estimates for the given values
val densities = kd.estimate(Array(-1.0, 2.0, 5.0))
// $example off$
densities.foreach(println)
sc.stop()
}
}
// scalastyle:on println
© 2015 - 2025 Weber Informatics LLC | Privacy Policy