org.apache.spark.examples.mllib.LDAExample.scala Maven / Gradle / Ivy
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// scalastyle:off println
package org.apache.spark.examples.mllib
import java.util.Locale
import org.apache.log4j.{Level, Logger}
import scopt.OptionParser
import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.ml.Pipeline
import org.apache.spark.ml.feature.{CountVectorizer, CountVectorizerModel, RegexTokenizer, StopWordsRemover}
import org.apache.spark.ml.linalg.{Vector => MLVector}
import org.apache.spark.mllib.clustering.{DistributedLDAModel, EMLDAOptimizer, LDA, OnlineLDAOptimizer}
import org.apache.spark.mllib.linalg.{Vector, Vectors}
import org.apache.spark.rdd.RDD
import org.apache.spark.sql.{Row, SparkSession}
/**
* An example Latent Dirichlet Allocation (LDA) app. Run with
* {{{
* ./bin/run-example mllib.LDAExample [options]
* }}}
* If you use it as a template to create your own app, please use `spark-submit` to submit your app.
*/
object LDAExample {
private case class Params(
input: Seq[String] = Seq.empty,
k: Int = 20,
maxIterations: Int = 10,
docConcentration: Double = -1,
topicConcentration: Double = -1,
vocabSize: Int = 10000,
stopwordFile: String = "",
algorithm: String = "em",
checkpointDir: Option[String] = None,
checkpointInterval: Int = 10) extends AbstractParams[Params]
def main(args: Array[String]): Unit = {
val defaultParams = Params()
val parser = new OptionParser[Params]("LDAExample") {
head("LDAExample: an example LDA app for plain text data.")
opt[Int]("k")
.text(s"number of topics. default: ${defaultParams.k}")
.action((x, c) => c.copy(k = x))
opt[Int]("maxIterations")
.text(s"number of iterations of learning. default: ${defaultParams.maxIterations}")
.action((x, c) => c.copy(maxIterations = x))
opt[Double]("docConcentration")
.text(s"amount of topic smoothing to use (> 1.0) (-1=auto)." +
s" default: ${defaultParams.docConcentration}")
.action((x, c) => c.copy(docConcentration = x))
opt[Double]("topicConcentration")
.text(s"amount of term (word) smoothing to use (> 1.0) (-1=auto)." +
s" default: ${defaultParams.topicConcentration}")
.action((x, c) => c.copy(topicConcentration = x))
opt[Int]("vocabSize")
.text(s"number of distinct word types to use, chosen by frequency. (-1=all)" +
s" default: ${defaultParams.vocabSize}")
.action((x, c) => c.copy(vocabSize = x))
opt[String]("stopwordFile")
.text(s"filepath for a list of stopwords. Note: This must fit on a single machine." +
s" default: ${defaultParams.stopwordFile}")
.action((x, c) => c.copy(stopwordFile = x))
opt[String]("algorithm")
.text(s"inference algorithm to use. em and online are supported." +
s" default: ${defaultParams.algorithm}")
.action((x, c) => c.copy(algorithm = x))
opt[String]("checkpointDir")
.text(s"Directory for checkpointing intermediate results." +
s" Checkpointing helps with recovery and eliminates temporary shuffle files on disk." +
s" default: ${defaultParams.checkpointDir}")
.action((x, c) => c.copy(checkpointDir = Some(x)))
opt[Int]("checkpointInterval")
.text(s"Iterations between each checkpoint. Only used if checkpointDir is set." +
s" default: ${defaultParams.checkpointInterval}")
.action((x, c) => c.copy(checkpointInterval = x))
arg[String]("...")
.text("input paths (directories) to plain text corpora." +
" Each text file line should hold 1 document.")
.unbounded()
.required()
.action((x, c) => c.copy(input = c.input :+ x))
}
parser.parse(args, defaultParams) match {
case Some(params) => run(params)
case _ => sys.exit(1)
}
}
private def run(params: Params): Unit = {
val conf = new SparkConf().setAppName(s"LDAExample with $params")
val sc = new SparkContext(conf)
Logger.getRootLogger.setLevel(Level.WARN)
// Load documents, and prepare them for LDA.
val preprocessStart = System.nanoTime()
val (corpus, vocabArray, actualNumTokens) =
preprocess(sc, params.input, params.vocabSize, params.stopwordFile)
corpus.cache()
val actualCorpusSize = corpus.count()
val actualVocabSize = vocabArray.length
val preprocessElapsed = (System.nanoTime() - preprocessStart) / 1e9
println()
println(s"Corpus summary:")
println(s"\t Training set size: $actualCorpusSize documents")
println(s"\t Vocabulary size: $actualVocabSize terms")
println(s"\t Training set size: $actualNumTokens tokens")
println(s"\t Preprocessing time: $preprocessElapsed sec")
println()
// Run LDA.
val lda = new LDA()
val optimizer = params.algorithm.toLowerCase(Locale.ROOT) match {
case "em" => new EMLDAOptimizer
// add (1.0 / actualCorpusSize) to MiniBatchFraction be more robust on tiny datasets.
case "online" => new OnlineLDAOptimizer().setMiniBatchFraction(0.05 + 1.0 / actualCorpusSize)
case _ => throw new IllegalArgumentException(
s"Only em, online are supported but got ${params.algorithm}.")
}
lda.setOptimizer(optimizer)
.setK(params.k)
.setMaxIterations(params.maxIterations)
.setDocConcentration(params.docConcentration)
.setTopicConcentration(params.topicConcentration)
.setCheckpointInterval(params.checkpointInterval)
if (params.checkpointDir.nonEmpty) {
sc.setCheckpointDir(params.checkpointDir.get)
}
val startTime = System.nanoTime()
val ldaModel = lda.run(corpus)
val elapsed = (System.nanoTime() - startTime) / 1e9
println(s"Finished training LDA model. Summary:")
println(s"\t Training time: $elapsed sec")
if (ldaModel.isInstanceOf[DistributedLDAModel]) {
val distLDAModel = ldaModel.asInstanceOf[DistributedLDAModel]
val avgLogLikelihood = distLDAModel.logLikelihood / actualCorpusSize.toDouble
println(s"\t Training data average log likelihood: $avgLogLikelihood")
println()
}
// Print the topics, showing the top-weighted terms for each topic.
val topicIndices = ldaModel.describeTopics(maxTermsPerTopic = 10)
val topics = topicIndices.map { case (terms, termWeights) =>
terms.zip(termWeights).map { case (term, weight) => (vocabArray(term.toInt), weight) }
}
println(s"${params.k} topics:")
topics.zipWithIndex.foreach { case (topic, i) =>
println(s"TOPIC $i")
topic.foreach { case (term, weight) =>
println(s"$term\t$weight")
}
println()
}
sc.stop()
}
/**
* Load documents, tokenize them, create vocabulary, and prepare documents as term count vectors.
* @return (corpus, vocabulary as array, total token count in corpus)
*/
private def preprocess(
sc: SparkContext,
paths: Seq[String],
vocabSize: Int,
stopwordFile: String): (RDD[(Long, Vector)], Array[String], Long) = {
val spark = SparkSession
.builder
.sparkContext(sc)
.getOrCreate()
import spark.implicits._
// Get dataset of document texts
// One document per line in each text file. If the input consists of many small files,
// this can result in a large number of small partitions, which can degrade performance.
// In this case, consider using coalesce() to create fewer, larger partitions.
val df = sc.textFile(paths.mkString(",")).toDF("docs")
val customizedStopWords: Array[String] = if (stopwordFile.isEmpty) {
Array.empty[String]
} else {
val stopWordText = sc.textFile(stopwordFile).collect()
stopWordText.flatMap(_.stripMargin.split("\\s+"))
}
val tokenizer = new RegexTokenizer()
.setInputCol("docs")
.setOutputCol("rawTokens")
val stopWordsRemover = new StopWordsRemover()
.setInputCol("rawTokens")
.setOutputCol("tokens")
stopWordsRemover.setStopWords(stopWordsRemover.getStopWords ++ customizedStopWords)
val countVectorizer = new CountVectorizer()
.setVocabSize(vocabSize)
.setInputCol("tokens")
.setOutputCol("features")
val pipeline = new Pipeline()
.setStages(Array(tokenizer, stopWordsRemover, countVectorizer))
val model = pipeline.fit(df)
val documents = model.transform(df)
.select("features")
.rdd
.map { case Row(features: MLVector) => Vectors.fromML(features) }
.zipWithIndex()
.map(_.swap)
(documents,
model.stages(2).asInstanceOf[CountVectorizerModel].vocabulary, // vocabulary
documents.map(_._2.numActives).sum().toLong) // total token count
}
}
// scalastyle:on println
© 2015 - 2025 Weber Informatics LLC | Privacy Policy