All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.spark.examples.mllib.PCAOnRowMatrixExample.scala Maven / Gradle / Ivy

The newest version!
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

// scalastyle:off println
package org.apache.spark.examples.mllib

import org.apache.spark.SparkConf
import org.apache.spark.SparkContext
// $example on$
import org.apache.spark.mllib.linalg.Matrix
import org.apache.spark.mllib.linalg.Vectors
import org.apache.spark.mllib.linalg.distributed.RowMatrix
// $example off$

object PCAOnRowMatrixExample {

  def main(args: Array[String]): Unit = {

    val conf = new SparkConf().setAppName("PCAOnRowMatrixExample")
    val sc = new SparkContext(conf)

    // $example on$
    val data = Array(
      Vectors.sparse(5, Seq((1, 1.0), (3, 7.0))),
      Vectors.dense(2.0, 0.0, 3.0, 4.0, 5.0),
      Vectors.dense(4.0, 0.0, 0.0, 6.0, 7.0))

    val rows = sc.parallelize(data)

    val mat: RowMatrix = new RowMatrix(rows)

    // Compute the top 4 principal components.
    // Principal components are stored in a local dense matrix.
    val pc: Matrix = mat.computePrincipalComponents(4)

    // Project the rows to the linear space spanned by the top 4 principal components.
    val projected: RowMatrix = mat.multiply(pc)
    // $example off$
    val collect = projected.rows.collect()
    println("Projected Row Matrix of principal component:")
    collect.foreach { vector => println(vector) }

    sc.stop()
  }
}
// scalastyle:on println




© 2015 - 2025 Weber Informatics LLC | Privacy Policy