org.apache.spark.examples.mllib.SimpleFPGrowth.scala Maven / Gradle / Ivy
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// scalastyle:off println
package org.apache.spark.examples.mllib
import org.apache.spark.{SparkConf, SparkContext}
// $example on$
import org.apache.spark.mllib.fpm.FPGrowth
import org.apache.spark.rdd.RDD
// $example off$
object SimpleFPGrowth {
def main(args: Array[String]): Unit = {
val conf = new SparkConf().setAppName("SimpleFPGrowth")
val sc = new SparkContext(conf)
// $example on$
val data = sc.textFile("data/mllib/sample_fpgrowth.txt")
val transactions: RDD[Array[String]] = data.map(s => s.trim.split(' '))
val fpg = new FPGrowth()
.setMinSupport(0.2)
.setNumPartitions(10)
val model = fpg.run(transactions)
model.freqItemsets.collect().foreach { itemset =>
println(s"${itemset.items.mkString("[", ",", "]")},${itemset.freq}")
}
val minConfidence = 0.8
model.generateAssociationRules(minConfidence).collect().foreach { rule =>
println(s"${rule.antecedent.mkString("[", ",", "]")}=> " +
s"${rule.consequent .mkString("[", ",", "]")},${rule.confidence}")
}
// $example off$
sc.stop()
}
}
// scalastyle:on println
© 2015 - 2025 Weber Informatics LLC | Privacy Policy