org.apache.spark.examples.mllib.StreamingLogisticRegression.scala Maven / Gradle / Ivy
The newest version!
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// scalastyle:off println
package org.apache.spark.examples.mllib
import org.apache.spark.SparkConf
import org.apache.spark.mllib.classification.StreamingLogisticRegressionWithSGD
import org.apache.spark.mllib.linalg.Vectors
import org.apache.spark.mllib.regression.LabeledPoint
import org.apache.spark.streaming.{Seconds, StreamingContext}
/**
* Train a logistic regression model on one stream of data and make predictions
* on another stream, where the data streams arrive as text files
* into two different directories.
*
* The rows of the text files must be labeled data points in the form
* `(y,[x1,x2,x3,...,xn])`
* Where n is the number of features, y is a binary label, and
* n must be the same for train and test.
*
* Usage: StreamingLogisticRegression
*
* To run on your local machine using the two directories `trainingDir` and `testDir`,
* with updates every 5 seconds, and 2 features per data point, call:
* $ bin/run-example mllib.StreamingLogisticRegression trainingDir testDir 5 2
*
* As you add text files to `trainingDir` the model will continuously update.
* Anytime you add text files to `testDir`, you'll see predictions from the current model.
*
*/
object StreamingLogisticRegression {
def main(args: Array[String]): Unit = {
if (args.length != 4) {
System.err.println(
"Usage: StreamingLogisticRegression ")
System.exit(1)
}
val conf = new SparkConf().setMaster("local").setAppName("StreamingLogisticRegression")
val ssc = new StreamingContext(conf, Seconds(args(2).toLong))
val trainingData = ssc.textFileStream(args(0)).map(LabeledPoint.parse)
val testData = ssc.textFileStream(args(1)).map(LabeledPoint.parse)
val model = new StreamingLogisticRegressionWithSGD()
.setInitialWeights(Vectors.zeros(args(3).toInt))
model.trainOn(trainingData)
model.predictOnValues(testData.map(lp => (lp.label, lp.features))).print()
ssc.start()
ssc.awaitTermination()
}
}
// scalastyle:on println
© 2015 - 2025 Weber Informatics LLC | Privacy Policy