org.apache.spark.examples.streaming.clickstream.PageViewStream.scala Maven / Gradle / Ivy
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// scalastyle:off println
package org.apache.spark.examples.streaming.clickstream
import org.apache.spark.examples.streaming.StreamingExamples
import org.apache.spark.streaming.{Seconds, StreamingContext}
// scalastyle:off
/**
* Analyses a streaming dataset of web page views. This class demonstrates several types of
* operators available in Spark streaming.
*
* This should be used in tandem with PageViewStream.scala. Example:
* To run the generator
* `$ bin/run-example org.apache.spark.examples.streaming.clickstream.PageViewGenerator 44444 10`
* To process the generated stream
* `$ bin/run-example \
* org.apache.spark.examples.streaming.clickstream.PageViewStream errorRatePerZipCode localhost 44444`
*/
// scalastyle:on
object PageViewStream {
def main(args: Array[String]): Unit = {
if (args.length != 3) {
System.err.println("Usage: PageViewStream ")
System.err.println(" must be one of pageCounts, slidingPageCounts," +
" errorRatePerZipCode, activeUserCount, popularUsersSeen")
System.exit(1)
}
StreamingExamples.setStreamingLogLevels()
val metric = args(0)
val host = args(1)
val port = args(2).toInt
// Create the context
val ssc = new StreamingContext("local[2]", "PageViewStream", Seconds(1),
System.getenv("SPARK_HOME"), StreamingContext.jarOfClass(this.getClass).toSeq)
// Create a ReceiverInputDStream on target host:port and convert each line to a PageView
val pageViews = ssc.socketTextStream(host, port)
.flatMap(_.split("\n"))
.map(PageView.fromString(_))
// Return a count of views per URL seen in each batch
val pageCounts = pageViews.map(view => view.url).countByValue()
// Return a sliding window of page views per URL in the last ten seconds
val slidingPageCounts = pageViews.map(view => view.url)
.countByValueAndWindow(Seconds(10), Seconds(2))
// Return the rate of error pages (a non 200 status) in each zip code over the last 30 seconds
val statusesPerZipCode = pageViews.window(Seconds(30), Seconds(2))
.map(view => ((view.zipCode, view.status)))
.groupByKey()
val errorRatePerZipCode = statusesPerZipCode.map{
case(zip, statuses) =>
val normalCount = statuses.count(_ == 200)
val errorCount = statuses.size - normalCount
val errorRatio = errorCount.toFloat / statuses.size
if (errorRatio > 0.05) {
"%s: **%s**".format(zip, errorRatio)
} else {
"%s: %s".format(zip, errorRatio)
}
}
// Return the number unique users in last 15 seconds
val activeUserCount = pageViews.window(Seconds(15), Seconds(2))
.map(view => (view.userID, 1))
.groupByKey()
.count()
.map("Unique active users: " + _)
// An external dataset we want to join to this stream
val userList = ssc.sparkContext.parallelize(Seq(
1 -> "Patrick Wendell",
2 -> "Reynold Xin",
3 -> "Matei Zaharia"))
metric match {
case "pageCounts" => pageCounts.print()
case "slidingPageCounts" => slidingPageCounts.print()
case "errorRatePerZipCode" => errorRatePerZipCode.print()
case "activeUserCount" => activeUserCount.print()
case "popularUsersSeen" =>
// Look for users in our existing dataset and print it out if we have a match
pageViews.map(view => (view.userID, 1))
.foreachRDD((rdd, time) => rdd.join(userList)
.map(_._2._2)
.take(10)
.foreach(u => println(s"Saw user $u at time $time")))
case _ => println(s"Invalid metric entered: $metric")
}
ssc.start()
ssc.awaitTermination()
}
}
// scalastyle:on println
© 2015 - 2025 Weber Informatics LLC | Privacy Policy