All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.spark.sql.DataFrameWriterV2.scala Maven / Gradle / Ivy

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.sql

import scala.collection.JavaConverters._
import scala.collection.mutable

import org.apache.spark.annotation.Experimental
import org.apache.spark.sql.catalyst.analysis.{CannotReplaceMissingTableException, NoSuchTableException, TableAlreadyExistsException}
import org.apache.spark.sql.catalyst.expressions.{Attribute, Bucket, Days, Hours, Literal, Months, Years}
import org.apache.spark.sql.catalyst.plans.logical.{AppendData, CreateTableAsSelectStatement, LogicalPlan, OverwriteByExpression, OverwritePartitionsDynamic, ReplaceTableAsSelectStatement}
import org.apache.spark.sql.connector.expressions.{LogicalExpressions, NamedReference, Transform}
import org.apache.spark.sql.execution.SQLExecution
import org.apache.spark.sql.execution.datasources.v2.DataSourceV2Relation
import org.apache.spark.sql.types.IntegerType

/**
 * Interface used to write a [[org.apache.spark.sql.Dataset]] to external storage using the v2 API.
 *
 * @since 3.0.0
 */
@Experimental
final class DataFrameWriterV2[T] private[sql](table: String, ds: Dataset[T])
    extends CreateTableWriter[T] {

  import org.apache.spark.sql.connector.catalog.CatalogV2Implicits._
  import org.apache.spark.sql.connector.catalog.CatalogV2Util._
  import df.sparkSession.sessionState.analyzer.CatalogAndIdentifier

  private val df: DataFrame = ds.toDF()

  private val sparkSession = ds.sparkSession

  private val tableName = sparkSession.sessionState.sqlParser.parseMultipartIdentifier(table)

  private val (catalog, identifier) = {
    val CatalogAndIdentifier(catalog, identifier) = tableName
    (catalog.asTableCatalog, identifier)
  }

  private val logicalPlan = df.queryExecution.logical

  private var provider: Option[String] = None

  private val options = new mutable.HashMap[String, String]()

  private val properties = new mutable.HashMap[String, String]()

  private var partitioning: Option[Seq[Transform]] = None

  override def using(provider: String): CreateTableWriter[T] = {
    this.provider = Some(provider)
    this
  }

  override def option(key: String, value: String): DataFrameWriterV2[T] = {
    this.options.put(key, value)
    this
  }

  override def options(options: scala.collection.Map[String, String]): DataFrameWriterV2[T] = {
    options.foreach {
      case (key, value) =>
        this.options.put(key, value)
    }
    this
  }

  override def options(options: java.util.Map[String, String]): DataFrameWriterV2[T] = {
    this.options(options.asScala)
    this
  }

  override def tableProperty(property: String, value: String): CreateTableWriter[T] = {
    this.properties.put(property, value)
    this
  }

  @scala.annotation.varargs
  override def partitionedBy(column: Column, columns: Column*): CreateTableWriter[T] = {
    def ref(name: String): NamedReference = LogicalExpressions.parseReference(name)

    val asTransforms = (column +: columns).map(_.expr).map {
      case Years(attr: Attribute) =>
        LogicalExpressions.years(ref(attr.name))
      case Months(attr: Attribute) =>
        LogicalExpressions.months(ref(attr.name))
      case Days(attr: Attribute) =>
        LogicalExpressions.days(ref(attr.name))
      case Hours(attr: Attribute) =>
        LogicalExpressions.hours(ref(attr.name))
      case Bucket(Literal(numBuckets: Int, IntegerType), attr: Attribute) =>
        LogicalExpressions.bucket(numBuckets, Array(ref(attr.name)))
      case attr: Attribute =>
        LogicalExpressions.identity(ref(attr.name))
      case expr =>
        throw new AnalysisException(s"Invalid partition transformation: ${expr.sql}")
    }

    this.partitioning = Some(asTransforms)
    this
  }

  override def create(): Unit = {
    runCommand("create") {
      CreateTableAsSelectStatement(
        tableName,
        logicalPlan,
        partitioning.getOrElse(Seq.empty),
        None,
        properties.toMap,
        provider,
        Map.empty,
        None,
        None,
        options.toMap,
        ifNotExists = false)
    }
  }

  override def replace(): Unit = {
    internalReplace(orCreate = false)
  }

  override def createOrReplace(): Unit = {
    internalReplace(orCreate = true)
  }


  /**
   * Append the contents of the data frame to the output table.
   *
   * If the output table does not exist, this operation will fail with
   * [[org.apache.spark.sql.catalyst.analysis.NoSuchTableException]]. The data frame will be
   * validated to ensure it is compatible with the existing table.
   *
   * @throws org.apache.spark.sql.catalyst.analysis.NoSuchTableException If the table does not exist
   */
  @throws(classOf[NoSuchTableException])
  def append(): Unit = {
    val append = loadTable(catalog, identifier) match {
      case Some(t) =>
        AppendData.byName(
          DataSourceV2Relation.create(t, Some(catalog), Some(identifier)),
          logicalPlan, options.toMap)
      case _ =>
        throw new NoSuchTableException(identifier)
    }

    runCommand("append")(append)
  }

  /**
   * Overwrite rows matching the given filter condition with the contents of the data frame in
   * the output table.
   *
   * If the output table does not exist, this operation will fail with
   * [[org.apache.spark.sql.catalyst.analysis.NoSuchTableException]].
   * The data frame will be validated to ensure it is compatible with the existing table.
   *
   * @throws org.apache.spark.sql.catalyst.analysis.NoSuchTableException If the table does not exist
   */
  @throws(classOf[NoSuchTableException])
  def overwrite(condition: Column): Unit = {
    val overwrite = loadTable(catalog, identifier) match {
      case Some(t) =>
        OverwriteByExpression.byName(
          DataSourceV2Relation.create(t, Some(catalog), Some(identifier)),
          logicalPlan, condition.expr, options.toMap)
      case _ =>
        throw new NoSuchTableException(identifier)
    }

    runCommand("overwrite")(overwrite)
  }

  /**
   * Overwrite all partition for which the data frame contains at least one row with the contents
   * of the data frame in the output table.
   *
   * This operation is equivalent to Hive's `INSERT OVERWRITE ... PARTITION`, which replaces
   * partitions dynamically depending on the contents of the data frame.
   *
   * If the output table does not exist, this operation will fail with
   * [[org.apache.spark.sql.catalyst.analysis.NoSuchTableException]]. The data frame will be
   * validated to ensure it is compatible with the existing table.
   *
   * @throws org.apache.spark.sql.catalyst.analysis.NoSuchTableException If the table does not exist
   */
  @throws(classOf[NoSuchTableException])
  def overwritePartitions(): Unit = {
    val dynamicOverwrite = loadTable(catalog, identifier) match {
      case Some(t) =>
        OverwritePartitionsDynamic.byName(
          DataSourceV2Relation.create(t, Some(catalog), Some(identifier)),
          logicalPlan, options.toMap)
      case _ =>
        throw new NoSuchTableException(identifier)
    }

    runCommand("overwritePartitions")(dynamicOverwrite)
  }

  /**
   * Wrap an action to track the QueryExecution and time cost, then report to the user-registered
   * callback functions.
   */
  private def runCommand(name: String)(command: LogicalPlan): Unit = {
    val qe = sparkSession.sessionState.executePlan(command)
    // call `QueryExecution.toRDD` to trigger the execution of commands.
    SQLExecution.withNewExecutionId(qe, Some(name))(qe.toRdd)
  }

  private def internalReplace(orCreate: Boolean): Unit = {
    runCommand("replace") {
      ReplaceTableAsSelectStatement(
        tableName,
        logicalPlan,
        partitioning.getOrElse(Seq.empty),
        None,
        properties.toMap,
        provider,
        Map.empty,
        None,
        None,
        options.toMap,
        orCreate = orCreate)
    }
  }
}

/**
 * Configuration methods common to create/replace operations and insert/overwrite operations.
 * @tparam R builder type to return
 * @since 3.0.0
 */
trait WriteConfigMethods[R] {
  /**
   * Add a write option.
   *
   * @since 3.0.0
   */
  def option(key: String, value: String): R

  /**
   * Add a boolean output option.
   *
   * @since 3.0.0
   */
  def option(key: String, value: Boolean): R = option(key, value.toString)

  /**
   * Add a long output option.
   *
   * @since 3.0.0
   */
  def option(key: String, value: Long): R = option(key, value.toString)

  /**
   * Add a double output option.
   *
   * @since 3.0.0
   */
  def option(key: String, value: Double): R = option(key, value.toString)

  /**
   * Add write options from a Scala Map.
   *
   * @since 3.0.0
   */
  def options(options: scala.collection.Map[String, String]): R

  /**
   * Add write options from a Java Map.
   *
   * @since 3.0.0
   */
  def options(options: java.util.Map[String, String]): R
}

/**
 * Trait to restrict calls to create and replace operations.
 *
 * @since 3.0.0
 */
trait CreateTableWriter[T] extends WriteConfigMethods[CreateTableWriter[T]] {
  /**
   * Create a new table from the contents of the data frame.
   *
   * The new table's schema, partition layout, properties, and other configuration will be
   * based on the configuration set on this writer.
   *
   * If the output table exists, this operation will fail with
   * [[org.apache.spark.sql.catalyst.analysis.TableAlreadyExistsException]].
   *
   * @throws org.apache.spark.sql.catalyst.analysis.TableAlreadyExistsException
   *         If the table already exists
   */
  @throws(classOf[TableAlreadyExistsException])
  def create(): Unit

  /**
   * Replace an existing table with the contents of the data frame.
   *
   * The existing table's schema, partition layout, properties, and other configuration will be
   * replaced with the contents of the data frame and the configuration set on this writer.
   *
   * If the output table does not exist, this operation will fail with
   * [[org.apache.spark.sql.catalyst.analysis.CannotReplaceMissingTableException]].
   *
   * @throws org.apache.spark.sql.catalyst.analysis.CannotReplaceMissingTableException
   *         If the table already exists
   */
  @throws(classOf[CannotReplaceMissingTableException])
  def replace(): Unit

  /**
   * Create a new table or replace an existing table with the contents of the data frame.
   *
   * The output table's schema, partition layout, properties, and other configuration will be based
   * on the contents of the data frame and the configuration set on this writer. If the table
   * exists, its configuration and data will be replaced.
   */
  def createOrReplace(): Unit

  /**
   * Partition the output table created by `create`, `createOrReplace`, or `replace` using
   * the given columns or transforms.
   *
   * When specified, the table data will be stored by these values for efficient reads.
   *
   * For example, when a table is partitioned by day, it may be stored in a directory layout like:
   * 
    *
  • `table/day=2019-06-01/`
  • *
  • `table/day=2019-06-02/`
  • *
* * Partitioning is one of the most widely used techniques to optimize physical data layout. * It provides a coarse-grained index for skipping unnecessary data reads when queries have * predicates on the partitioned columns. In order for partitioning to work well, the number * of distinct values in each column should typically be less than tens of thousands. * * @since 3.0.0 */ def partitionedBy(column: Column, columns: Column*): CreateTableWriter[T] /** * Specifies a provider for the underlying output data source. Spark's default catalog supports * "parquet", "json", etc. * * @since 3.0.0 */ def using(provider: String): CreateTableWriter[T] /** * Add a table property. */ def tableProperty(property: String, value: String): CreateTableWriter[T] }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy